CHAPTER 1
ANTENNA STRUCTURE FUNDAMENTALS

~ Mich of the world around us is affected by wave phenonena,
which are often characterized by frequency (nunber of waves per
unit of time) and wave length. " Frequency and wave |ength are
related by the sgeed wi th which waves propagate through the
various media. or exanple, the speed of electronagnetic wave
propagation in free space is about 1.182 x 10' inches per
second. Therefore the wave length for the frequency of 1 x 10°
cycles per second (1 GHz) is 1.182 x 10/ 1 x 10°or 11.8 inches
(in metric units, the speed is about 3 x 10' nm per second, so
that the wavelength at 1 GHz is about 300 nm). The rule is that
SLectronagnet|c wavel engt hs are about 11.8 inches (300 mm per

The frequencies relevant to | arge-dianeter antennas are in
t he m crowave band of from2 to 100 , thus the wavel engths are
from about 6 inches to 1/8 of an inch (150 nmto 3 .
M crowave freguen0|es are higher than radio and television
frequencies and are |ower than the infrared, optical, and ganma
ray frequencies at the progressively higher el ectromagnetic
bands. The m crowave antennas that are considered here have
di ameters of fromas small as 10 meters to as |large as 100
meters, and are used for a nultitude of conmmunications and radio
astronony applications fromground and space conmunications to
deep space exploration.

M crowave antennas require surface reflection accuracies of
from one-twelfth to one-fiftieth of a wavelength. This neans
that the ratio of accuracy to structure size for mcrowave
antennas greatly exceeds that of customary civil-engineered
bui I dings or bridges. Although design and analysis of these
antennas is a form dabl e engi neering chall enge, precise
t echni ques are avail able for designing and anal yzi ng ant enna
structures on both component and system | evels

This chapter provides an overview of the physical antenna
system Antenna structures for m crowave energy transm ssion and
col | ection have evolved fromprimtive pre-Wworld War Il era
configurations to high-performance antennas of today. This
evolution has |led from polar mount hour-angle and declination
(HA-dec) configurations to the nore nodern azi nut h-el evation (az-
el) antennas. The relatively newer beam-waveguide antennas use a
modi fi ed az-el antenna optical system  Another variation is an
of fset “clear-aperture” antenna. O fset antennas avoid a
bl ocki ng "shadow effect" of subreflector and subreflector
supports, but their construction is nore conplex. Therefore,
non-of fset, symmetrical antennas predom nate. Dual-reflector
systens, either offset or symetrical, have subreflectors in
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addition to main reflectors, and feedhorns that transmt or
receive energy to or fromthe subreflector. An advantage of

dual -refl ector systens is an associ ated magnification factor that
effectively anplifies the physical focal length. "cassegrain®
and "Gregorian" systens are the two arrangenents that use dual
reflectors. Both of these exploit specific useful properties of
coni ¢ section curves.

1.1 BACKGROUND *

Hei nrich Hertz discovered radio waves in 1888. Six
years |later, the field of radio astronony originated with diver
Lodge's specul ation of the existence of radiation fromthe sun
(Ref. 1.1). In 1932, Karl Jansky first detected electromagnetic
radio waves of extraterrestrial origin (Ref. 1.2). Jansky's
antenna was an array of aerials arran%ed on a rotating wooden
platform about 30 neters long. In 1937, Gote Reber was
nmotivated by Jansky's work to buila a single-axis rotatable 30-
foot-diametéer parabolic antenna (Ref. 1.3). Reber's backyard
antenna was built prinmarily fromwooden 2 x 4s; the reflecting
surface was gal vanized iron sheet netal. Figure 1-1 is a
reconstruction of the antenna that is located at the entrance to
bhe_Natlonal Radi o Astrononmy Cbservatory in G eenbank, West

i rginia.

Reber was able to confirm Jansky's detection and also to
construct a sky map of the strength of radio em ssions (Ref.
1.4). As Sir Bernard Lovell commented, "when one renenbers that
Reber was a |one hand working in his spare time his achi evenent
stands out as altogether remarkable." TLovell himself was
responsi ble for developing the 250-foot-dianmeter steerable
azimuth and el evati on axes antenna at Jodrell Bank in Engl and.
This antenna, shown in Figure 1-2, was conpleted in 1957 under
the sponsorship of the University of Minchester. The structura
configuration has accordingly been called a "Manchester Munt."
At that tine this design seemed a reasonable way to provide
azinuth and elevation axis notions, although it has rarely been
adopted in later antennas. The Jodrell Bank antenna secured its
place in history when it tracked the Russian Sputnik satellite in
1957, and was the world's | argest steerable antenna until the
%87 letion of the 100-nmeter antenna at Effelsburg, Germany, in

_ The world's Iar%est antenna is currently the 1000-foot-
di amet er aperture spherical bow at Arecibo, Puerto Rico. This
antenna was built in the early 1970s and features a fixed
reflecting surface with a novable feed which is suspended above
the surface by cables to provide mcrowave beam steering. It is
unli kely that antennas as |arge or larger than those already in
service will be built in the future. The now established trend
is to operate arrayed groups of smaller dianeter antennas (say,




30 to 34-neter diameters). One exception to this is an

i nnovative 100-neter-dianeter antenna that is schedul ed for
conpletion in the 1990s at the National Radio Cbservatory site at
G eenbank, West Virginia.

The under st andi ng, technol ogy, and interest in parabolic
antennas grew rapidly, and in the decade follomnng_t e conpl etion
of the Jodrell Banks antenna there were 64-neter-dianeter
antennas at Parks, Australia, and Goldstone, California. O her
operating installations included a 300-foot-dianeter antenna at
G eenbank, West Virginia, a 150-foot-dianeter antenna at \Wall ops
| sl and, Virginia, and several 85-foot- to 90-foot-dianeter
antennas throughout the world. Although never conpleted, a 600--
f oot - di ameter steerable antenna was conceptualized and partly
designed. Although these ultra-large antennas do not necessarily
nmeet the precision surface accuracy desired for the nore recent
shorter wavel ength missions, many of these antennas have had an
operational lifespan of nore than 30 years and are continuing to
provi de useful service.

1.2 CURRENT ANTENNA CONFI GURATI ONS

Figure 1-3 shows a 34-neter antenna configuration

typi cal of nmany operating antennas: an "az-el, Cassegrain, whee
and track.” The term "wheel and track" refers to the azimuth
bearing. This consists of sets of wheels at the base of the
structure that roll on a steel plate track that is supported by a
circular concrete foundation ring. waz-el" denotes an azi muth
axis of rotation below an (orthogonal) elevation axis of
rotation. The astronomer's "alt-az" nount inplies essentially
only a substitution of "altitude" for “elevation”. The term
"cassegrain® refers to a mcrowave optical systemthat contains a
subreflector between the antenna surface and the focal point. In
contrast, a Gregorian antenna places the subreflector on the far
side of the focal point. This entails a disadvantage in
reguiying a longer structure to support the subreflector in
addition to sone optical restrictions. Cbnse%uently t he
preval ent mcrowave antenna systemby far is the cassegrain; thus
It receives the nost attention in this book

cassegrain (and Gegorian) systens use mcrowave feeds that
are located above the reflecting surfaces and are usually held in
| ace by feedcone structures. Both are "dual reflector" systens
ecause of the use of a subreflector in addition to the main
reflector. An alternative optical system dispenses with
subreflectors and places the feed at the focal point (“focal
feed") . The subreflector in the first two cases, and the feed in
the third case, is held in place by structural leg assenblies
that usually are either tripods (three |egs) or quadripods (four
legs) . Quadripods are the npst common.




1.3 GROUND ANTENNA COVPONENTS

Figure 1-4 is a sideview sketch that shows the main
conponents of a 34-neter az-el antenna. This is a dual-reflector
system that includes a Cassegrain subreflector in conjunction
with a parabolic main reflector. The structure is essentially
symretrical with respect to the plane of the sketch

103.1 Tippina Structure (refer to Figure 1-4)

The dish surface panels, backup structure, _
subreflector, feedcone, quadripod, and elevation wheel constitute
the tipping structure, which is subject to the tipping notions
associated with rotations of the antenna s elevation axis.

Panel s. The m crowave reflecting surface for the antenna
shown in the figure is made up of about 500 high-precision
surface panels. These are "parasitic" el enents that are designed
to support only the local |oads of their surfaces and are not
intended to participate in the main structural action. The
Panels are held in Place by individual adjustable jacks so that

hey can be precisely posifioned at installation tinme.

_ Backup Structure. The backup structure is a three-
di mensi onal trusswork that provides the foundation for the pane
jacks and is the key elenment in supporting the externa
environmental and internal self-weight [oads that act on the
system Analysis and design of this structure will be the
subject of nost of the attention in subsequent chapters. The
backup structure al so supports the feedcone and the bases of the
quadri pod | egs

Subreflector. The subref|ector is supported fromthe apex
of the quadripod by a P05|t|on|ng mechanism  This nmechani sm
adj usts the location of the subreflector to conpensate for the
structural deflections of backup structure and subreflector
support |egs under |oading conditions.

_ Feedcone. The feedcone contains the feed, which is a
m crowave device that directs the energy towards the subreflector
during mcrowave transm ssion or collects the energy fromthe
subreflector during reception. The two na%or additironal paths in
the m crowave system are between the subreflector and main
reflector and fromthe main reflector out to space. The
m crowave energy paths during transm ssion or during receive

nmodes are essentially the same and differ only in direction

_ Quadripod. The quadripod in the figure is attached
directly to the backup structure at the reflector surface. Each
| eg has a trapezoidal cross-section, with plane trusses (which
are seen in the figure) formng the two |ong sides and solid




plates formng the two shorter sides. The legs are joined at
their apex by a 3-dinensional truss structure.

Elevation wheel. The el evation wheel is attached to the
backup structure. The wheel establishes the elevation position
under command of the elevation drive and control system The
wheel contains gear teeth at its rimthat engage wth an
el evation drive pinion(s). The elevation drive pinion is at the
out put end of a gear box assenbly that is powered by the
el evation nmotor(s). The elevation drive for this antenna is
supported at the upper end of a long tangent link. The tangent
link is supported at its base by a pivot on the alidade. The
interior portion of the elevation wheel in the vicinity of the
rim contalns the counterweights, which can be of concrete, steel
or | ead, depending upon the availability of the space for
packagi ng and the | everage in bal ancing the wei ght of the
rotating structures with respect to the elevation axis.

1.3.2 Alidade and Azinuth Drive

The alidade supports the el evation bearings and the
el evation drive and pinion. Two elevation bearings at opposite
ends of an elevation axis and the el evati on wheel pinion provide
the entire support for the tipping structure.

_ The alidade shown in Figure 1-4 has a wheel and track
azi mut h beari ng sKsten1that provi des the rotation about a
vertical axis. The alidade corners are.supported on wheel ed
carriage (truck) assenblies that roll upon a precisely aligned
steel track. The steel track rests on a massive circular
concrete foundation. The azimuth drive consists of one or nore
assenblies of a motor, brake, gear reducer assenbly, and out put
pinion, all located at one or nore carriages. The wheel and
track assenbly is ordinarily incapable of resisting the latera
environmental forces on the system thus it is customary to
provide a central pintle bearing to stabilize the base of the
alidade for |ateral forces. The antenna shown here has a pintle
bearing on top of a concrete foundation pit. The pit contains a
cabl e wap-up device to acconmodate the notions of the man
el ectrical and m crowave cables and conduits during azi nut
rotation.

An alternative and frequently enpl oyed tyPe of azinuth
drive systemuses a | arge-diameter azinmuth bearing |ocated at the
top of a pedestal. The pedestal, typically constructed of
reinforced concrete, is high enough to allow the antenna rimto
clear the ground at |ow elevation attitudes. The alidade for
this type of drive is lower than the for the wheel and track
arrangenment because sonme of the height requirenent is shared by
the pedestal. Figure 1-5 shows the arrangenent; the antenna is
NASA's 70-neter antenna at Col dstone, California. The azinuth
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bearing for a noderate sized antenna, say up to 25 neters in
dianeter, could be a type of wfrictionless" steel roller bearing,
dependi ng upon maxi mum sizes that can be manufactured, shipped,
and field-assenbled. In the case of very |arge-dianeter
antennas, such as the 70-neter antenna, a hydrostatic azinuth
bearing is enployed. The alidade floats on pressurized steel

ads over a pool of oil. A separate radial bearing counteracts

ateral loads on the tipping structure. The elevation drive here
consists of notors and gearboxes that are nounted on an alidade
platform  The output pinion of each gearbox engages directly
with the elevation wheel gear.

Preci se shaft angle transducers, such as encoders, are
frequently used to supply elevation and azimuth positioning.
Al ternative positioning devices that have been used or have been
given serious consideration include gyros and various
triangul ati on schemes.

1.4 ALTERNATI VE CONFI GURATI ONS
1.4.1 Pol ar Axi s Ant ennas

The hour-angle and declination (HA-dec% axis antenna is
one alternative to the az-el axis antenna. The hour-angle axis
Is the outernpst axis; it is a polar axis that points to the
North or South Pole, depending upon the henisphere. The azinmuth
or polar wheel is in the plane perpendicular to_the polar axis
and is thus parallel to the equatorial plane. The declination
axis is the inner axis and is carried on the hour-angle wheel

The declination axis is orthogonal to but does not intersect the
polar axis. The antenna tipping structure pivots on the
declination axis and a second tipping notion that includes the
declination wheel is inparted by rotations of the polar axis. In
the centered position (at the md position of the declination
wheel ) , the antenna pointing axis is in a plane parallel to the
equatorial plane. Figure 1-6 shows the features of a HA-dec
antenna orientation. In this figure ® is the local latitude, t.

Is the hour angle, and & is the declination angle (the antenna is
shown at zero declination). The position of a celestial object
Is determned by the rotation t of the hour-angle wheel and the
rotation & of the declination wheel

_ To convert from an HA-dec coordinate systemto an az-el
coordinate system the elevation angle o can be determned from

sino=sindsin ® + cos 8§ cos ® cos t [1.1]
and the azinuth angle A can be determ ned from
cos A= (sin d cos®- cos & sin ® cos t)/cos a [1.2]
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These equations can be solved to provide the hour-angle
and declination for known latitude and azimuth and el evation
angles as foll ows:

sin d=sin ® sin o+ CosS ®cos aces A [1.3]
and
Cost = (sin oa-sind sin ®)/(sin § cos ®) [1.4]

Figure 1-7 is a photograph of a 34-neter HA-dec
antenna. The hour-angl e wheel I's shown al nost face-on in the
phot ograph and the upper extremties of this wheel support the
declination axis bearings. The declination wheel occupies the

sBace cut out from the hour-angle wheel in the center and just
above the pol ar axis.

An X-Y antenna is a variation of the HA-dec antenna
that is equivalent to a Ha-dec antenna for which the polar axis
is depressed to the horizontal. The X-Y antenna is sonetines
preferable to an az-el system when it becones inportant to track
an object that passes directly overhead--an operation that Is not
readily performed by an az-el system There have been designs
where a third, cross-elevation, axis was added to az-el antennas
to overcone “zenith pass" difficulties.

In the early antenna days, astrononers preferred HA-dec
antenna configurations because they elimnated the need to
convert from az-el coordinates to astronony coordi nates.
Nevert hel ess, conplexities of the structure associated with_the
HA-dec arrangenent resulted in significant disadvantages. The
task of transformng to astronom cal coordinates becane trivial
in the 1960s with advances in conputational capabilities.

1.4.2 Beam WAveaui de Ant ennas

A beam-waveguide antenna is a variation of an az-el
Cassegrain antenna optical systemin which the feed is at the
bottom of the alidade or possibly below ground in a basenent. A
set of additional secondary mirrors, sone flat and some curved,
route the microwave energy to the feed. Except for the one
mrror closest to the surface, which is required to rotate in
el evation with the tipping structure, the secondary mirrors can
all be fixed to the alidade. Sonme of the advantages of the beam-
wavegui de antenna are the sinPIicity of servicing the feed
because of inproved accessibility, the ease of changing feeds for
varying mcrowave purposes, and the advant age of the feed being
situated in a protected indoor environment. However, there are
sone di sadvantages, including |oss of mcrowave efficiency
because of the additional reflections and the |onger path from




subreflector to the feed, and the extra effort and difficulty
involved in accurately aligning the added nirrors. The
particular mcrowave functions planned for an antenna ultinately
determne the suitability of the beam wavegui de system A
schematic of a beam-waveguide antenna optical arrangement is
shown in Figure 1-8.

1.4.3 O fset Antennas

The reflecting surface of a conventional cassegrain
antenna is partly bl ocked by the .subreflector and subreflector
support. Reduction of the effective aperture by the bl ocking
shadow can degrade antenna efficiency by from 3 to 8 percent.
The offset antenna elimnates this blocking by placing the
subreflector and supports just past the edge of the aperture.
Figure 1-9 shows the configuration.

A problemwth this configuration is that the antenna
structure is asymmetrical and therefore not as sinple to design
and build. Consequently, there are application-dependent
tradeoffs between the inprovenents in mcrowave efficiency and
the penalties fromthe offset structure. For nmany years the
| argest two-axis steerable offset antenna in the United States
had only a 10-meter di aneter.

1.5 CONI C SECTI ON GEOMVETRY

Antenna surfaces are formed by the rotation of a plane conic
section curve about a focal axis--thus the surfaces generated are
par abol as, hyperbolas, or ellipses of revolution. Parabolic
surfaces are used for main reflectors, and the hyperbolic and
elliptical surfaces are used for the subreflectors of dual-
reflector Cassegrain and Gregorian systens, respectively. The
three basic plane curves are shown on Figure 1-10.

The two-di mensi onal equations of the three plane curves are
represented in a rectangul ar coordinate systemin terns of the
focal axis direction z and the lateral direction r. The curves
can be represented in a polar coordinate systemin terms of the
focal radiusp and the angle fromthe focal axis B. The three-
di mensi onal surfaces of revolution can be developed in a
Cartesian X,Y,2 coordinate systemby treating r as the radius of

revol ution and then replacing each radius by its projections on
the X and Y axes.

The equations of the curves in rectangular and pol ar
coordi nates are:




%ocal length = F

I=_r? [ 1. 53]
F
P=_ oF [1.5b]
1+cosp

Hyperbola _ _ _ _
Sem -transverse axis a, sem-conjugate axis b, focal length
c=(a’+b?)!/?, The asynptotes pass throu?h the origin of coordinates

at the angles with tangents equal to [b/al.

z?2 _r?_
=__b? 1.6k

P atc cosf [ )

.. s " . . . .
em -major axis a, sem-mnor axis b, focal length c=(a?-b?)!/?

22,22 [1.7a)
a: b’
=.____‘b2 | 1.7b

P a+c cosf ; )

~ Special properties of these curves that make themuseful in
optical systens are:

Parabola
A normal (vector) to the curve bisects the angle between a
line parallel to the focal (Z% axis and the focal radius.
Theretore, incident rays parallel to the focal axis are
reflected toward the focal point. Conversely, rays
emanating fromthe focal point energe as rays parallel to
the focal axis after reflection.

erno
The normal to the curve at every point bisects the angle
between the two focal radii at the point. Consequently, a
ray towards one focal ﬁOlnt that is intercepted by the
nearest branch of the hyperbola is reflected toward the
opposite focal point.
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The hyperbola is the locus of points for which the
difference in the length of the focal radii is constant.
This difference is 2a.

ipse
The normal to the curve bisects the angle between the focal
radii (simlar to the hYFerboIa). Consequently, all rays
from one focal point w be reflected to the other

The ellipse is the locus of all points for which the sum of
the lengths of the focal radii is constant. This sumis 2a.

In the special cases of "shaped" antennas, the basic
surfaces are modified by small perturbations fromthe ideal conic
equation. Nevertheless, the perturbations are typically so snal
that they can be ignored in structural design and surface
deformation analysis. It wll be seen in Chapter 2 that the
original surface shape affects deformation anal¥sis only through
the direction cosines of this surface. The perturbations wth
respect to an idealized nearby apﬁroxinating'conic surface have
an insignificant influence upon these direction cosines.

1.6 DUAL- REFLECTOR OPTI CAL ARRANGEMENTS
1.6.1 Cassearain and Gregorian Systens

_ Cassegrain and Gregorian configurations are shown in
Figure 1-11. The cassegrain systemin Figure |-ha enplo%s a
parabolic main reflector and a hyperbolic subreflector. he
subreflector i S positioned between the main reflector and its
f ocal poing. This main reflector focal point is really a
"virtual® focus because of the presence of the subreflector. The
G egorian system (Figure 1-11b) has a parabolic main reflector
and an el liptical subreflector on the tar side of the main
reflector focal point. The feeds for both cassegrain and
G egorian systens are placed at the renote focal points with
respect to the subreflector. Both systens capitalize upon the
special reflective properties that were described above for
parabol as, hyperbolas, and ellipses. ~The aperture planes and
focal planes, shown on edge in the figure, are parallel planes;

t he aﬁerture plane is tangent to the nmain reflector at the vertex
and the focal plane contains the nmain reflector focal point.

1.6.2 Magnification Fact or
It can be seen for the cassegrain system (Figure |-ha)
that the aperture angle B at the nain reflector virtual focus is

| arger than angle o, Wwhich illum nates the subreflector fromthe
second hyperbola focal point (at the feed). |If there were no
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subreflector, as in the case of a focal point feed antenna, the

feedhorn woul d need to be designed to illumnate the angle 2p.
Here, in the Cassegrain case, the feed illumnates the nmuch
smaller angle 20, This smaller illumnation angle requirenent

provi des some advantages for the mcrowave system

Hannan, in Ref. 1.5, postulated that there is an equival ent
f ocal Point feed parabola of the sane diameter D, but with_|onger
focal length, for which the feed angle would also be 2a. The
original and equival ent parabolas are shown on Figure 1-12. The
magni fication factor Mis defined as the ratio of the foca
length F* of the equival ent parabola to the focal length F of the
original parabola, “so that F = MF. Hannan showed that Mis
%|ven by the ratio of half the tangent of the aperture angle to
alf the tangent of the feed angle. That is

M= (tan % )/ (tan % ) [1.8]

In terms of the hyperbola parameters ¢ and a (Eq. [1.6]),
the magnification factor can be shown to be

M= (c+a)/(c-a) [1.9]

Typical values of Mare in the range of fromfour to ten for
antennas with focal |ength-to-dianeter ratios (F/D) in the range
of from0.25 to 0.50. his inplies subreflector dianmeter-to-nain
reflector diameter ratios of about one to ten. The magnification
factor will be encountered in a later chapter in conjunction with
ant enna boresi ght pointing.

1.6.3 O fset Antenna Geometry

The layout of an offset parabolic antenna is equi val ent
to that of a large dianeter "wparent" reflector fromwhich a .
smal | er circul ar region on one side and beyond the center of the
parent is used as the reflecting surface. The subreflector is
I nside of the space between the center of the parent and the
nearest rim of the aperture. Figure 1-13 shows the projection of
an of fset antenna on the aperture plane. In the figure, R,is
the radius of the parent, R, is the aperture radius of the offset
antenna, Y, is the offset between the center of aperture and the
center of the parent, and A is the dinension fromcenter of
parent to the nearside rim of the aperture.

The equation of the aperture projection is

X +(y-Y,)? =R;? [1.10]
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and the equation of the reflector surface, which is an extension
of Eq. [1.5a] with origin shifted to the center of the aperture,
is

7 = ¥ 4(y+Y)? [1.11)
aF

Equations [1.10] and [1.11] are based on a right-handed
Cartesian coordinate systemin which x, y, and z are the
coordinates of a point in the directions of the X Y, and Z axes.
The orientation of the X and Y axes are as shown in Figure 1-13;
the Z axis is positive when pointing upward fromthe aperture
plane. ! As a consequence of the right-handed system the
positive direction of the Z axis is always upward above the main
reflecting surface.

Figure 1-14 shows a profile of the surface along the Y axis.
Three sets of axes are shown: The Y and Z set of axes are those
for the parent parabola, the y, and 2, axes are parallel to_ the Y
and Z set but offset by y, and z, where z.,=Y,’/74F (Eq. [1l.5a]), and
the Y, and 2z, axes relate to a local coordinate systemin which
the vy, axis Is tangent to the surface at point p, (which is on
the centerline of the offset aperture). The andle bet ween t he
vp» and the war coordi nate systens is ¢,, in which ¢,=tany /2F.

The X axis coordinates are the same for all three systens.

~ One property of a parabola of revolution is that the curve
of intersection Wwth any right circular c&llnder W th an axis
offset from but parallel to, the focal (Z) axis is a plane
ellipse. Wien r 1s the radius of the cylinder, the sem ngjor
axis of the ellipse is r/cos$, and the semi minor axis is r. The
pl anes of intersection of all such cylinders whose axes coincide
wth the 2z, axis of F“?ure 1-14 are parallel, and the centers of
the ellipses contained in these planes have 2z, coordi nates equal
to r’/4¥. A true view of the curves of intersection is given by
the projections in the X-y, coordinate plane. The coordinates of
the centers of the intersection curves in the |ocal coordinate
systemare O r?/4F sind,, r’/4F CcOS ¢,.

According to the above, when the cylinder encloses the
offset aperture, the major axis is R,/cosd,, the mnor axis is R,
(in the X direction), and the center of the ellipse has z, =
R,2/4F. The center of this ellipse in the |ocal system has
coordinates O R/’sin¢,/4F, and R,cos ¢,/4F. Mre explicitly,

'This coordi nate systemis used throughout the text for az-
el antennas. The convention is that the X axis is always
horizontal and parallel to the elevation axis and the Y axis is
positive upward when the antenna is facing the horizon.
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in terms of the points noted in Figure 1-14, the center of the
el lipse has coordinates given by the distances O Pi~Pe/Ps~Ps-
This ellipse lies in the plane perpendicular to the plane of the
figure that contains the points ps;, p(, and ps.

Figure 1-15 shows an offset antenna that has been _
intersected by 12 cylinders with equally spaced radii. Figure
| -15a is a 3-dinensional view in the X-Y-Z coordinate system An
outline of the parent parabolic surface is marked by * synbols.
Figure 1-15b is a projection of the rings on the X-y, |ocal
coordi nate system plane. This shows a true view of the
elliptical intersection curves, and also shows that the ellipses
are eccentric (to a maxi num of fset of R,” sin ¢,/4F).

The transformation equations for the three coordinate
systems, using s sin ¢, and € cos ¢,, are

RSy
- leat

Returning to Figure 1-14, and using Egs. [1.12] and [1.13)
to conpute the local coordinates of the points p, and ps, shows
t hat both points have the 2, coordinate of p,=(R c/4F) .
Conmputing the Z coordinate of p, in the parent parabol a
coordi nate system as the average of the coordinates of p, and p,
results in Z,= (¥ + R?)/4F. A plane perpendicular to the Y-Z
plane at a distance of Y, fromthe Z axis wll intersect the
aperture plane-enclosing cylinder at x=R, and y =Y,, and the Z
coordinate on the parabolic surface here wll a?a|n be (v,
+R;?) /4F, which shows that p, is the projection of the
intersection of the aperture cylinder and parabolic surface on
the plane of Figure 1-14.

Al of the foregoing reIationships_apFIy to any parabolic
surface of revolution that, either physically or conceptually, is
intersected by a circular cylinder offset fromthe axis of the
par abol a.

_ One nore particular feature that conceivably could be used
in the Preparatlon_of the tooling to either fabricate or check
the surface is a S|nPIe pl anar tenplate, which could be used to
define the contour of the surface. This tenplate would be used
in planes parallel to either the Y-Z plane or parallel to the X-Z
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lane. In particular, if the tenplate were held parallel to the
-Z plane at a fixed value of x, the surface equation would be

z = y’/4F + K [1.15]

where K is a constant that depends upon the X coordinate at which
the tenplate is placed. The equation shows that the shape, which
Is a function on Y of y, does not change at each x |ocation.
However, the tenplate has to be held at a different offset in the
Z direction for every distinct value of x. This feature is well
known, but we are not aware of any attenpt, successful or
otherwise, to exploit it. Another special type of surface
tenpl at e depends upon having fixed |ength pendul ous probes
suspended froma rigid bar. These probes define the _
theoretically exact contour when aligned parallel to the Z axis
and the bar is aligned wwth a radial secant to the surface. This
the of tenplate could be used anywhere al ong any radial plane of
the surface, but the idea also has not appeared practical enough
for exploitation

1.7 THE BLOCKED SHADOW

By using offset antenna geonmetry, obscuring of the nain
reflector by the subreflector and support |eg shadows is avoi ded.
Neverthel ess, the antenna systens that predom nate today are not
of fset and therefore are subject to these blocking effects. The
bl ocked area consists of two types of shadows: plane wave and
spherical wave. The plane wave bl ocking effects conprise the
projections of the subreflector and an upper portion of the
support legs. The spherical wave blocking is the shadow of rays
emanating fromthe focal point that intersect the lower portion
of the support leg. Figure 1-16 shows typical shadows projected
onto the surface plane.  Herndon (Ref. 1.6) devel oped a
conpr ehensi ve numerical integration conputer programto calcul ate
the bl ocked areas; but results close to those fromthe conputer
program can easily be obtained with some sinple approxinations.

Figure |-17a is a profile sketch of the reflector in the
pl ane of one of the support legs. The leg is assuned to have a
trapezoi dal cross-section that is opaque with respect to
transm ssion of mcrowave energy. Synbols of the figure are:

F = Focal length

R= Miin reflector radius

R; = Subreflector radi us

S = Radial distance to centerline of leg at the
intersection with the main reflector surface

%2, = Z coordinate at S

Z; = Z coordinate at back of subreflector

h = Half |eg depth

w; -~ Wdth at inside face of |eg
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w, = Wdth at outside face of |eg _
B = Angle fromthe focal point to the rimof the

mai n refl ector

¢ = Slope of surface at intersection with the centerline of
- the leg
y = Slope angle of the |eg

Figure 1-17b is an expanded detail at the intersection of
he leg with the surface. s, and SO are the radial distances to
he points where the extensions of the inner and outer faces of
he leg would intersect the surface, and Qis the distance al ong
he tangent fromthe leg centerline to either of the intersection
points at s; or S, The relatively snmall curvature makes it
reasonable to replace the curved surface by the tangent in the
vicinity of S. Qis given by

t
t
t
t

Q = h /sin (y+¢) [1. 16]
therefore

S; = S-Qcos ¢ [1.17a)
and

S, = S+Q sin¢ [1.17b)]

Fi gure 1-17c¢ shows the spherical wave shadow of the leg as a
trapezoid of length RSO To find the maxi mumw dth of the
trapezoid at the rimof antenna w,, it is necessary to find the
di stances x; and X, where a ray fromthe focal point to the rim
crosses the inner and outer faces of the leg. To find x,, for
exanpl e, we have

F-Z; = X;/tan B + (S; - X;)tan y [1.18]
in which z; is the Z coordinate at s;. By introducing %, the Z
coordinate at SO, a similar expression can be forned for x,, and
t hese expressions can be used to determ ne X, and X,.

If the width at the outer face of the |eg governs the

spherical wave shadow, then the width of the trapezoid at SO is
w, and’ the width at the rimis

wy = W, RIX [1.19]
If the width at the inner face of the |leg governs, it is

necessary to find the width of the trapezoid at SO  To do this
we use the distance X,,, which is where a ray fromthe focal
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oint to the surface at SO intersects the inner leg face. X, can
e found from the follow ng expression

F' ZI = on/tan Bp + (SI-XIo)tan W [ l ' 2 O ]
in which”
tan B, = So/ (F-2,) [1.21)

and in this case the width of the spherical wave bl ocking
trapezoid at its base is

Ws Wy So/Xpo [1.22]
and the width at the rimis
wy = w; R/ X [1.23]

The ideal profile for the leg cross-section would be when the
outer face provided the sane width at the rimas the inner face.
In this case, the outer width would be

W, (ideal) ~ W, S,/X; [1.24]

The foregoing conputations inply several approximations that
aLe expected to have only a mnor effect on the results. Sone of
t hese are:

Elg The leg is assuned to be entirely opaque.
2) The spherical wave |eg shadow i S modelled by the
PrOJectlon of a trapezoid on the aperture plane. The
ong sides of the trapezoid actually are curved and the
approach here slightly overestimtes the shadow.
(3) The curve of the outer reflector rimis replaced by the
strai ght edge of the trapezoid.
(4) The leg profile is taken to have a constant cross-
section for the full length, and any custonmary tapering
towards a narrow point at the |leg base is ignored

A NATLAB Brogran1to cal cul ate the bl ocked shadow essentially
as described above is presented in Appendix |-A

1.8 THE ANTENNA SURFACE

The antenna surface is the primary m crowave feature of
the antenna reflector system and is the essential conponent to
either collect the mcrowave energy signal on reception or to
reflect the energy on transmssion. Antenna mcrowave efficiency
I's dependent on maintaining highly precise tolerances wth
respect to the shape of the ideal surface curve. Surfaces of
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| arge antennas are traditionally conposed of an arrangement of
many (frequently hundreds) of small, carefully manufactured,
i ndl vidual separate panels.

1.8.1 symnetrical Panel Arrangenents

Figure 1-18 shows the reflecting surface and panel
arrangement of a typical symmetrical 34mantenna. The outer siXx
rings are subdivided into 48 separate panels, the next two inner
rings contain 24 panels each, and the tirst inner ring has 12
panels. The center of the aperture, which is blocked by the
subreflector, IS open. Al the panels are trapezoidal, and
al though there are significant differences in the areas of panels
fromring to ring, the average area (projected on the aperture
pl ane) of the 348 panels is 2.6 square neters. For convenient
and accurate manufacturing, the range of panel areas tend to be
from2 to 5 square meters. The tooling for panel fabrication
requires only one fixture per panel ring, because all panels in
each ring are the sane.

The Panels are supported by radial and circunferential
trusses of the backup structure. The nodes of the backup
structure trusswork are arranged to be aligned with the pane
corners so that each panel can be supported froma backup
structure node by an adjustable jack. This panel support
arrangenent |eads naturally to the conventional "rib and ring"
backup structure configuration, in which the ribs are radial
trusses that are the major structural conponents and the rings
are circunferential (hoop) trusses that provide auxiliary
supporting interaction.

1.8.2 O fset Arrangenents

The conveni ent adaptation in synetrical antennas of
panels to backup structure does not hold for offset antennas.

O fset antennas inpose a choi ce between the need to PFOVIde many
fferent panel fixtures or to sacrifice the desirably repetitive
ture of rib and ring construction. Figure 1-19 shows three

ternative arrangenents for the panel and backup structures for

ffset antennas.

di
na
al
0

The offset rib and ring arrangenent in Figure |-19a provides
only an approximation of the advantages of true rib and r|n?
construction. As shown previously, the rings are elliptical and
not circular, and there is no repeatability to reduce the nunber
of panel fabrication fixtures.

~ The tetrahedron nodul e backup structure in Figure 1-19b is
equivalent to an interlocking set of two kinds of tetrahedral.
One set of tetrahedra has its bases near the front surface and
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the other set has its bases at the back surface of the backup
structure. Particul ar rod nenbers of the structure are shared by
both sets of tetrahedral. The inset sketch provides an idea of
the rod arrangement. The panels can either be of triangular or
of hexagonal shape. The hexagonal panels woul d enconpass a
pattern of six triangles of the figure, such as the group in the
inset, so that alternate corners of each hexagon can be supported
by jacks. Although all panels would necessarily be different,
the arrangenment does provide the opportunity for a three-point
statically determnate support system which is preferable to the
four-point support of trapezoidal panels. The tetrahedron-type
arrangement wth hexagonal panels is frequently adopted for
orbiting space antennas and has al so been used successfully for
smal | symmetrical ground-based antennas. |In the case of the
ground antennas it was possible to machine the entire surface in
one setup.

The masked rib and ring format of Figure 1-19c requires only
one panel fabrication fixture for each of 1ts rings. (This is

still about twice as many fixtures as would be required for a

symretrical antenna of the same aperture.) The backup structure
IS an isolated portion of the backup structure that would be used
In constructing the conplete parent antenna; ribs are aligned
along the parent radii and rings follow the central parent
circles. he structure |oses some of the advantages of symetry
and structural efficiency of the traditional rib and ring framng
and is nore difficult to design and fabricate than a symmetrica
ant enna.

1.8.3 Surface Panel Installation

- Panels are aligned in the field by adjustnent of the
corner jack heights. A custonary method of alignnment is to use a
preci se theodolite placed at the center of the aperture to read
the position of the panel corners and to determ ne the necessary
adj ustments for the jacks. A tooling tape is frequently used to
set the radial distances for theodolite targets placed at the
panel corners. \Wen the targets are in position at the
prescribed radii, the elevation angle of the theodolite can be
established for each target ring and the jacks are adjusted
accordingly to provide the desired surface. After the panels are
set via theodolite neasurenment and jack adjustnment, an important
antenna will be reneasured either by theodolite or by m crowave
measurements. M crowave hol ography (Ref. 1.7) or photogrammetric
measur enent #Ref. 1.8) are techniques that have been used
effectively for this purpose. After reneasurenent, the surface
I S re-adjusted to reduce any observed residual errors. [terative
repetitions of the process can be undertaken, depending upon the
accuracy required for the surface. At this witing, procedures
for accurate alignment of surface panels are still being studied,
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Wi th nuch attention being given to inproved nmeasurenent
techni ques and to automation of these activities.

Fi el d adjustnment of the panels is al nost always necessary
for | arge antennas because it is either uneconom cal, or even
i npossible, to fabricate and install the tons of backup structure
conponents to the precise tolerances needed for the fina
surtace. Typical installation surface accuracy specifications
are from0.1 mmto 0.5 nmm root-nean-square (rms), Which is nmuch
nmore restrictive than comercial fabrication and installation
practice. The need to provide field adjustnent is one of the
reasons why the panels are parasitic; i.e., they are only
required to support their own weight and the |ocal environmenta
| oadings (wind, snow, ice) applied directly to their surface.
This way, the panels are not required to participate in the major
structural action of the backup structure. It would be extrenely
difficult to provide reliable |oad transfer between the backup
structure trusses and the panels. There are also other practica
reasons that enforce the logic of parasitic panels, and non-
parasitic panels are unusual

1.8.4 Surface Area

It is useful to be able to calculate the surface area
of the panels for the purpose of estimating the weight, costs,
and |oading on the backup structure. The surface area a, of a
symetrical antenna is

A, = 8/ 3 wF?[(1+R%/4F?)%%-1] [1.25]

Wien the focal length-to-dianmeter ratio is replaced by the
synbol ®and the projected aperture area is denoted by A,, then

Eq. [1.25) can be rewitten to give the ratio of surface area to
aperture area as

A/A, = 32/3 @[ (1+[1/16®?})%% - 1] [1.26)
The surface area of an offset antenna can readily be

calculated by nunerical integration. From Figure 1-20, an
increment in the planform area AA is given in terns of the

vari abl e parent radius Rr,, the half central angle 6,, and the
increment in radius AR

AA, = 2 RO, AR [1.27]

The central angle can be found from Rr,, the aperture radius
R,, the offset y,, and the | aw of cosines, so that

ei i cos-l[(Riz - ,Raz + Yoz)/ (2 Riyo) ] [1*28]
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The surface area is equal to the planform area divided by
the cosine of the surface slope ¢, where ¢, can be obtained by
differentiating the equation of the parent curve (Egq. [1.5a]),

e.g.
oy : tan!R,/2F [1.29]

A program to conpute surface area factors for symmetrical
and offset antennas is given in Appendix |-B. Figure 1-21 shows
curves of the area ratio factors for a range of focal length-to-
diameter ratios. The figure shows that offset antennas have
smal l er surface areas than symmetrical antennas of the sane
aperture area. This has been confirmed by an independent nethod
of conputati on.
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DEVELOPMENTS IN ANTENNA STRUCTURAL ENGINEERING
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APPENDI X 1-A
PROGRAM TO CALCULATE THE BLOCKED SHADOW

Figure 1-A shows a MATLAB ﬁrogran1to cal cul ate the bl ocked
shadow. = The total plane and spherical wave shadow areas and the
relative proportions of each are provided. |n addition, the
user-furnished dinension 2z, is used to determne the clearances
bet ween the back edge of the subreflector and the inner support
leg. A noderate acquaintance with any high-1level coding

| anguage, such as FORTRAN, shoul d make the code under st andabl e,
even Wth no prior exposure to the program however, the
follow ng coments nmay be hel pful

(1) The % synbol is interpreted as the beginning of a non-
execut abl e coment .

(2) The programis case sensitive and al nost all
instructions and built-in functions require |ower case.

(3) In contrast to (2) above, all of our variables
(including those of Figure 17) are represented in upper
case (i.e. , W represents w;, TANBETA represents tan B,
PSI is y, and so forth.

The sanple data built into the program which the user is
given the opportunity to replace, will result in a total shadow
of 5.478 percent. The effect on the mcrowave antenna is nore
severe than the geonetric aperture area reduction, perhaps by a
factor of about two.
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é&%2§”3%7/ z/ ~ ﬁ?

$This i s MATLAB\ M SCPROBS\ BLOCKI NG M Feb.10,1993

% conput e bl ocking of subreflector and tripod or quadripod

% The following two functions are expected to be available to MATLAB
% function y=sine(x) function y=cosine(x)

% y=si n(x*pi /180) ; y=cos (x*pi/180) ;

format conpact
% Set sone default values for 34M HEF antenna
NLEGS=4; PSI=61.3967; F=434; 25=406.7;

R=669. 3; RS=75 . S=328: H=19.45; WI=9.5; W =14 .
disp(’supply- NLEGS, PSI, F, ZS, R RS, S, H W, WO, AND "return" /)
keyboard

Tanphi =S/ 2/ F;

PHI =at an( Tanphi ) *180./pi;
Q=H si ne(PSI +PH )
SI=S-Q*cosine (PHI)
80=8+Q*cosine (PHl)
2I=SI*SI/4/F
ZO=SOr SO 4/ F
ZMAX=R*R/4/F;
TANBETA=R/ (F- ZMAX)
TANP=sine (PSI) /co0Si ne(PSl)
DEN=I / TANBETA- TANP
XI=(F-ZI~SI*TANP)/DEN
XO=(F- ZO SO TANP) ~ / DEN
TANBETAP=SQ (F-z0)
DENP=I / TANBETAP- TANP
XIO0=(F~ZI-SI*TANP)/DENP
MAGI=R/XI

MAGO=R/ XO

MAGIO=SO/XIO

WOPT=MAGIO*WI
AFACT=pi/144.
ASUB=RS* RS* AFACT $SQUARE FEET
AMAI N=R* R* AFACT

i f wo>=wopT

,IASPH:( R- SO *WO* . 5% (1+MAGO) ;

el se

AgPH:( R-SO *W* .5%(MAGIO+MAGI) ;
en

AsPH=AsPH*NLEGs/ 144

APLANE=WO* (SO RS) *NLEGS/ 14 4

L EGSHAD=ASPH+APL ANE

TOTSHAD=L EGSHAD+ASUB

TOTPCT=TOTSHAD/ AMAI N* 100

LEGPCT=LEGSHAD/ AMAI N* 100

% Bl ocking cal cul ations conpleted above

% Now get leg-to-subreflector Clearances
CLH=SI-(ZS-2I)/TANP-RS % horizontal clearance
CLP=CLH*si ne(PSI) % perpendicular to |eg face cl earance

T




APPENDI X 1-B
PROGRAM FOR AREA COVPUTATI ON

Figure 1-B is a MATLAB programto conpute surface area
factors for symmetrical and offset antennas. Although the
notation is different, the formulation foll ows Egs. Fl. 26 through
1.29], and there are also explanatory conmments.
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% Feb 16,1993 this is areasorr.M, sSurface area of offset parabol oid
format conpact

% set some defaults _ _

fed=.2:.05:10 % focal length to dianmeter ratio _

sd=.105 g rati o, subreflector envel ope to parent dianeter

n=20 s number Of increment to use for parent radius
disB('Supply"fod=a:b:c,sd= , n=", or accept defaults, then "return"’)
keyboard .

rm=2/(1-sd) ;%radius of the parent, (aPerture radius is ‘" at 1:0)
yo=rm-1 ; % offset to center of aperture ]

rmin=yo-1; rmax=yo+1l; % rmax-rmin =2=aperture diam.

delr=2/n;

r=rmin+delr/2 :delr:rmax-delr/2;

nf=length(fod) ;

f=fod*2*rm % the set of focal |engths

ce=(r.”2 =1 +yo~r2)./(r.*2*yo);

theta=acos (cc) ;

del a=2*r. *theta*delr; % vector of increments in projected aperture area
% the next few lines gets the factor for symretric antennas
$creep up on the answer with fo, f1,f2,£3

fo=fod.”2; fl=(16%fo).~(-1); f2=1+fl; £f3=£f2.~1.5-1;
fsyme32/ 3*fo. *f 3;

for j=1:nf

slopef=sqrt (1+(r./2/£(j )).”~2 ); % 1/cos(surface slope)

asj (j)=sum(dela.*slopef) i

fogf(j)=asj(j)/pi; fratio surface to aperture areas

en

disp(’SUMMARY’ ) _

disp(’/fsym,foff,are the ratios of surface to

?i?pé' f od f fsym foff
e )

;%perture areas’)
f’ fsym'  foff’ )

ﬁg (5
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CHAPTER 2
SURFACE ACCURACY

Devi ations from perfect geonetrical accuracy of the
reflecting surface have a major effect on the efficiency of the
antenna system  Deformations of the structure are responsible
for variations in the pathlengths of the mcrowave signals from
the affected parts of the surface. These pathlength variations
prod%ce adverse errors in the phase characteristics of mcrowave
signal s.

The main reflector surface, which is usually parabolic or
quasi -parabolic, is the nost inportant contributor to surface
I naccuraci es because its large size nmakes it vulnerable to
defl ections. Consequently, this chapter concentrates on the
geonetry and deformations of the. parabolic main reflector and how
these effects are analyzed in terns of mcrowave pathlength
errors. Nevertheless, there is hardly any difference in the
ana#ysis of deviations for any of the other subreflector
surfaces.

~ Reflector surface analysis is based upon the geonetry of
optical ray tracing. These geonetric relationships represent the
first-order mcrowave effects adequately for all practical
structural engineering analysis and design purposes. (More
rigorous treatnents, although not ordinarily needed for
structural engineering, could be provided by the fields of
diffraction analysis and physical optics). Optical ray tracing
Is a strai%htformard geonmetrical analysis that is capagle of

e

appropriately characterizing the efficiency of the structural
surface using only two pr|nC|?Ies of optics: i.e., rays travel in
straight lines, and the law of reflection (the angle of

reflection at the surface equals the angle of incidence).

2.1 ANTENNA GAI N AND EFFI Cl ENCY

Antenna gain is the ratio of the power transmtted by the
antenna to the power of an ideal isotropic radiator.The gain of
an ideal circular aperture antenna is concentrated in the
boresight direction and is given numerically in terns of the
di aneter D and wavel ength A as

Gy= (®D/A)? [2.1]
A real antenna has an overall efficiency factor n, of | ess than
unity. In practice the nunerical gain is replaced by the gain G

in units of decibels (dB). Decibels are conputed as ten tines
the conmon logarithm of the nunber. Consequently, the gain is
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G=10 1log,, Ny(nD/A)? [2.2]

The efficiency factor is the product of a chain of
efficiency terns froma nunber of |oss-contributing effects, each
l ess than unity. Some of these effects are illumination,
spillover, cross-pol arization, |eakage, aperture blocking, and
surface efficiency (Ref. 2.1). Surface efficiency is the nost
significant of all of these and is a primary concern of the
structural engineer. The magnitude is usually in the range of
from40%to 90% The efficiency factor associated with the
bl ocked surface area (Section 1.7) (primarily dictated by
configuration rather than de3|gnR could be in the range of from
85%to 90% The illumnation efficiency could be as |low as 85%
but can be inproved significantly when the reflecting surface
shapes are slightly perturbed ("shaped") With respect to the
basi c parabolic, hyperbolic, or elliptical surfaces. The other
contributing efficiencies tend to be in the 95%to 99%range, so
that they are individually much less significant. Qur enphasis
in this chapter will be on the reflector surface accuracy and
effiC|encY, which to a |arge extent can be controlled by
structural engineering because these factors are dependent upon
the response of the structure to environmental |oading.

It is fortunate that a sinple, but sufficiently accurate,
approxi mation exists to quantify reflector surface efficiency.
The Ruze equation (Refs. 2.2 and 2.3) provides the efficiency n
in terns of the wavelength A and a readily calculated structura

parameter, o, which is the root nean square (rms) half-
pathlength error. The Ruze equation is

n = exp-(4nc/A)’ [2. 3]
Consequently, the reduction of gain due to the surface errors is

dB(loss)= 10 log,;n = 10(log,, e)x(4nc/A)’ = 4.3429 (4no/A)? [ 2. 4]

The Ruze equation was derived originally for the assunptions
that the surface errors have a Gaussian distribution, that they
are uncorrel ated outside of a region that is small in conparison
with the reflector diameter, and that there are a sufficient
nunber of terms in the conputation of o to make it statistically
meani ngful .  The first two assunPtions coul d be approxi mately
satisfied by the randomerrors of manufacturing and field
installation tolerances. However, when the surface errors are
the result of structural deflections caused by the environmental.
| oadi ng, neither of these two assunptions are valid because
structural deformations are correl ated over |ong di stances and
have systematic determnistic (rather than random Gaussian)

distributions. Neverthel ess, the Ruze equation seens to hold in
nost practical cases despite violation of the assunptions. In



tests of surface deflection patterns caused by environnental

| oading, the validity of the equation has been verified to
provi de al nost the same reduction in gain that was found by a
much nore conprehensive geonetric theory of diffraction analysis.
The third of the assunptions abovelFresents no difficulties

because the nunber of terns |ogically chosen for analysis usually
wll readily neet the statistical requirenents.

The Ruze equation can be used to establish a termcalled the
“gain limt” for an antenna of given dianmeter and pathlength
error. At the gainlimt the increase of gain (Eqg. [2.19) for an
increase in operating frequency (e.g., reduction in wavelength)

Is offset by the loss of efficiency (Eq. [2.4]) for the smaller
wavel ength that acconpanies the frequency increase. |t can be
shown that the half-pathlength error at the gain limt. is

o= Min [2.5]

The surface efficiency at the gain limt is only 37% and the

associated gain reduction is 4.3 dB. This value of the
athlen?th error is sometinmes considered to be a practical upper
imt of usefulness for a given antenna and frequency.

2.2 THE PATHLENGTH

Figure 2-1 shows a section through a radial plane of a
Cassegrain antenna. This is a projectionin the R Z plane in
which R is the radial coordinate axis and Z is the focal axis.
An incident ray parallel to the focal (Z) axis at radius r
crosses the focal plane at point 1 and is reflected at the
surface at point 2. The reflected ray travels towards the foca
point until it inpinges on the subreflector at point 3. A
subsequent reflection brings the ray to the feed at point 4.
Efﬁﬁ ?otat|ons F, ¢, and a are the sane as in Egs. [1.5] and

The vector tangent to the surface at r ist and 6 is the
slope of the tangent. The normal to the surface is n and 6 is
al so the angl e between the normal and the incident and the
reflected rays; B(= 28) is the full angle between incident and
reflected rays. Point 2, with coordinates (r,z), i s the point

of incidence on the main reflector.

By differentiating Eq. [1.5a), we find

tan® = r/2F [2.6]
Al so, by inspection of Figure 2-1

tan = r/ (F-2) [2.7]



and the hypotenuse of the triangle 1-2-5 can be shown to be F+z.
Consequently, if this was a focal point antenna (with a feed at
the focus instead of a subreflector) the pathlength from foca
plane to the surface to the focal point would be (F-z) +(F+z) =
2F. A sinpler way to arrive at this is to consider a centra
incident ray along the focal axis (r =0). It is clear that
incident and reflected rays would travel the path distances of F
from the focal ﬁlane to the surface and again back to the focal
point. The pathlength fromfocal plane to feed for a Cassegrain
antenna wWith a subreflector is also nost easily found by
considering a central ray. By adding the paths 1-2, 2-3, and 3-4
of the figure, this focal plane to focal point path is 2(F+a).

It could be shown that the pathlength is also the same for any
other incident ray parallel to the focal axis.

The inportant feature of the parabolic reflector is that the
pat hl ength, either for focal feed or cassegrain system is
I ndependent of the radius to the. incident ray. That is, the
pathlength for an ideal geonetric surface is a constant for any
point of the surface. |In determning the surface accuracy our
prime interest is the change in this pathlength due to surface
deformations. This change, which affects the microwave phase, is
consi dered next.

2.3 PATHLENGTH ERROR

2.3.1 Conmput ational Fornul a

o Figure 2-2 shows an enlarged view of the region in the
vicinity of point 2 of Figure 2-1. “Now, however, a vector a that
represents the deformation fromthe ideal surface has been added.
This vector is the result of a change in surface sha%e_due_to any
cause, such as external environmental |oading, or fabrication, or
alignment errors. |t is convenient to consider a deformation
froma point 6 of the original surface chosen so that d extends
frompoint 6 and termnates at point 7, which is on the path of
the original ray reflected frompoint 2 to the focal point.
There is no |l oss of generality in this because every def ormati on
vector will always termnate at a ray that extends from sone
originally undeforned surface point towards the focal point, or
possibly at an extension of that ray bel ow the surface.

The deformation has been greatly exaggerated in this figure;
deformations are ordinarily so small relative to the scale of the
original surface that the geonetry in this region can be
5|nPI|f|ed with negligible error. This allows the analysis to
replace surfaces in a small region by the tangents to the
surfaces. The result is that the surface frompoint 6 to point 2
is replaced by the tangent plane at point 2. Furthernore the
tangent at points 2 and 6 can be taken as the sane.

It can be seen fromthe figure that the sumof the distances
5




frompoint 2 to point 8 and point 2 to point 7 is the difference
in path from focal Plane to tocal point for an incident raK t hat
p y tha

crosses the focal ane at point 1 and the path of a ra t
crosses the focal plane at point 9. These two distances are al so
dinensioned in the figure as s and p.

In the figure, the distance frompoint 2 to point 10 is the
projection of the deformation vector on the nornmal to the surface
vector and, from vector algebra, is equal to the dot(inner)
product of the deformation vector with a unit normal n. The

di stance s is this dot product divided by the cosine of 6. That
s,

S = d.n/cos 0 [2.8]
and, fromthe figure, the distance p is

p=s Cos B=s cos 20 *“ [2.9]
or using a trigononetric identity,

p=s (2 cos’0-1) [2.10]

so that the pathlength error is

s+p = 2d4.n cos 0 [2.11]
FinaII%, we have an inportant equation that is used to
conpute p, the half-pathlength error at a particular point on the
surf ace,
p=4d.n C0S 6 [2.12]

In words: The hal f-pathlength error is the normal conponent
of the deformation vector tines the direction cosine wth respect
to the focal axis. Sometinmes the half-pathlength error is
referred to as the axial conponent of the normal error, which
with proper interpretation is equivalent to the previous
description. Equation [2.12], which was devel oped for a
parabolic main reflector, can be used to conpute the half-
pathlength error for any deformed surface in ternms of the nornal
to that surface and the associated direction cosine. It Is
common practice to refer to the half pathlength error nore sinply
as the "pathlength error” and to drop the prefix “half”.
Fol | owi ng conmon practice, the remainder of this text wll also
imply that the half pathlength error is intended even though the
prefix "half" nmay or may not be included.

2.3.2 Pathlength Error In Three D mensions



It is necessary to generalize the pathlength error
computation to the three-dinmensional space of an antenna surface.
In particular the pathlength error is conputed at a discrete set
of points distributed over the surface. hese points provide a
sanpling of the surface for conputation of the rns error in the
Ruze equation (Eq. [2.3]). The set of points typically consists
of the nodes nearest the surface in the analytical nodel of the
structure. This set is usually closely equivalent to points at
the corners of the surface panels.

Equation [2.12] can be rewitten to provide the half-
pathlength error at a particular point i as

Pi = (¥: an), [2.13]

in which y,is the direction cosine at point i with respect to
the focal (Z) axis and dn is the projection (d.n) of the
deformation vector on the surface nornal at point i. That is , dn
is the normal conponent of the deformation vector.

In three-dimensional Cartesian space we wll take the X and
Y axes to be in the aperture plane and the Z-axis positive in the
direction of the focal point. This is consistent with the
definition of the coordinate system given in Section 1.6.3. The
radi al coordinate r of Figure 2-1 will be replaced by its x and vy
(Pyt hagorean Theorem conponents. Furthernore, although the
subscript i is typically omtted for convenience, the follow ng
di scussion refers to sonme particular point i wth coordi nates
(X0 Yis 23).

By extending Eq. (i.5a) froma curve to a surface of

revolution, the equation of the parabolic surface G(x,y,z)
becones

G(x,y,z) = Z -(x* + y°)/4F = O [2.14]

To find a unit normal to the surface, we first find the
gradient V8, which is a vector normal to the surface and positive
towards the focal point. Thus from Eq. [2.14) we have

V6 = [-2x/4F =-2y/4F 1] [2.15]
in which the conponents are ordered parallel to the X Y, and Z
axes, respectively. The unit normal vector is obtained by
normalizing the gradient by its length. This provides the
conponents of a unit normal to the parabolic surface as

n=Ve/|Ve| = [-x -y 2F)/T [2.16]

in which



T=("+ y + 4F2)1/2 [2.17]

The unit normal is often expressed in terns of its direction
cosines with respect to the coordinate axes. That is

n =[Yx Yy 'Yz] [2 18]
Therefore, matching Egqs. [2.17] and [2.18] provides

Yo = -XIT [2.19a)
Y YT [2.19b]
Y. = 2F/ T [2.19¢)

The deformati on vector in a Cartesian coordinate systemis
4= [uvw) | [2.20]
in which u, v, w, are the conponents of the deflection vector at

the point inthe X, Y, and Z directions. Therefore, for
Eq. [2.13],

dn = 4.n = (Y.u +y,v + Y,W) [2 21]
Then substituting in Eg. 2.13, we have the half-pathlength error
p; at the point i in terms of the coordinates of the point

Pi =~ _2F(-xu =-yv + 2Fw), [2.22]

(1),

or in terns of direction cosines

Pi = (r.r,u + .0,V + T.Y.W), [2.23]

2.3.3 paraneters For Fitting

It is not necessary to conpute the_PathIength error in
terms of the original surface equation, but it is permssible
(and advisable) to conpute the pathlength error from an
alternative surface that best-fits the deforned surface. The
inportant effect on the mcrowave systemis the phase error
distribution over the surface. Specifically, if the original
parabolic surface defornmed into another $ﬁrabolic surface, all
rays from the second surface would have the sanme new overal
pathlength . Since these rays would arrive at the feed with a
constant phase there would be no adverse m crowave effect.
Therefore the approach is to conpute pathlength errors as the
residual errors with respect to an alternative new parabolic

8




surface that best fits the defornation data.

The alternative surface is defined in terns of five

paraneters that constitute a rigid body notion and an additiona
araneter that is related to a change in the original focal

ength. Nevertheless, it is necessary for the position of the
subreflector for a dual reflector system or for the position of
the feed for a focal feed reflector, to be novable. This would
allow conpatibility variations in the mcrowave path geonetry
established by the fitting parameters. Typical antennas actually
do have provisions for providing these necessary notions.

The five parameters (Ref. 2.4) are indicated in Figure 2-3.
They consist of three translations, U, Vo, and W, parallel to
the X, Y, and Z coordi nate axes, and rotations 6, and 6, about the
respective axes. One nore paraneter is related to the new foca
| engt h F,. Reference 2.6 describes a wdely distributed FORTRAN
programto conpute the best fit surface and residual pathlength
error. A focal change paraneter k was defined in this reference
in terns of the focal length of the new parabola F. and the
original focal length F as foll ows:

k= (Fe/F -1) [2. 24]

In Ref. 2.5 the six paraneters were called the "homology
parameters" because they represent a transformation from the
original parabolic surface to an alternative parabolic surface.

2.3.4 The Fitting Equation

The three translation paraneters produce the follow ng

changes in the original displacenments with respect to the new
surface:

Au = -U [2.254]
Av = -V. [2.25Db)
AW = =W, [2.25¢C)

The paraneter k, which was taken in Ref. 2.6 as the fourth
parameter, produces

Aw = -kz [ 2. 26]
The structural deformations are always small for any
reasonabl e antenna structure so that the best-fitting surface

will differ very little fromthe original. In particular the
magni t udes of the rotations are small enough to allow the sines

9



of rotation angles to be replaced by the angles and the cosines
to be replaced by unity. Consequently, the rotation parameters
6, and 6, additionally affect the u, v, w, conponents as foll ows:

Au= -z 6, [2.274]
Av=z 6, [2.27b)
AW -y 6, + 20, [2.27¢)
Conbi ning Egs. [2.25), [2.26), and [2.27] we have
Au = -1 0 0 0 0 -z U,
Av = o -1 O 0 Z 0 v,
Aw = o 0 -1 -z -y X . W,
k
0,
|\ 0,) [2.28]

Equation 2.28 can be witten for any particular node i as
Auvw =¢; H [2.29]

in which Auvw is the triad on the left-hand side of Eg. [2.28],

e, on the right hand side is the 3-by-6 coefficient matrix on the
right-hand side, and H is the vector of fitting parameters on the
right-hand side. The equation relates the change in defornmation
coefficients at node i to the coefficient matrix for that node
and the fitting paraneters for all nodes.

Wth om ssion of the subscripts, Eq. [2.23] can be witten
for this node in matrix form as

P=au [ 2. 30]
i n which
T [k Yoy Y.y ) [2.31]
and
u = {(u
v [2.31]
w)

Consequently, after fitting we have

10



p(fit) = a(u + Auvw) [2.32]
or

p(fit) = au+ b H [ 2. 33]
wher e

b=ac

~ For reference, the rowcolum order of the natrices just
defined are summarized in the table bel ow

atr O der

vaocT
RPWHEWO®
X X R XX
oO0OwkREF

Now it is possible to expand Eq. [2.33] to include the half-~
pathlength error vector p (after fitting) for all of the nodes of
the surface as

P=AU+BH [2.35]

In the above if there are N nodes in the surface, p is an Nby-1
row of half-pathlength errors, Ais an N-by-3N matrix in which
the a vectors are contained in the rows, beginning in colum 1 in
the first row, colum 4 in the second row, colum 7 in the third
row, and in colum 3j-2 in the jth row, Uis a 3N-by-1 vector
containing the u vector triads in the order of the associ ated
nodes, B is an N-by-6 matrix that contains the associated b
vector in each of its rows, and His the same as in Eq. [2.28].

2.3.5 Weightinag Factors

At this point it would be possible to solve a | east
squares problemto find H and then find the nean square
pathl ength error (the nmean of the squares of the conponents of
the pathlength error vector). This would not be strictly
accurate because the nodes do not have equal m crowave

| mpor t ance. It is nmore appropriate to conpute a weighted rns
error. To do this, the weighting factors for each node can be
based upon two factors: one is a mcrowave illumnation factor

(a function of feedhorn design), the other depends upon the
aperture area tributary to the particular surface node.

When the panels are arranged in a circular pattern, as in

11



Figure 1-18, it is straightforward to conpute the area weighting
factors in terns of the central angle and md-radii of the

adj acent panel rings. It may also be instructive to normalize
t he area_mel?htlng factors so that they sumto N In this manner
a weighting tactor of unity applies to a node associated wth the

average aperture area. These area weighting factors can also be
used I'n the conputation of environnental |oading that depends
?pon the reflector area, such as from panel weight or wnd

or ces.

[llumnnation factors are given in a variety of ways as
functions of a radius €& that has been normalized to unity. An
exanple illumnation factor is

f(g) = 0.3 + 0.7(1-E?) [ 2. 36]

At the rim,(€ = 1) the illunmnation factor is 0.3. The
attenuation in decibels would be about 10 dB (since this is an
anplitude factor, rather than a factor on antenna power, decibels
are conputed as 20 tines the logarithnm). Consequently, the feed
that produces this illumnation would be called a "10-dB horn."

In many of the nore nodern antennas, the main reflector is a
“shaped” parabolic surface. The shaping consists of a very smal
perturbation of the surface from a parabolic curve. As an
exanpl e, the nmaxi mum departure froma parabolic curve for a 34-m
antenna would be on the order of less than 20 mm  The purpose of
shaping is to provide an illumnation factor of close to unity
for nost of the surface; therefore the weighting factors for
shaged antennas could be based upon only the area that is
tributary to the nodes. In any case the weighting factors can be
assenbled in a diagonal matrix Wwhere the entries correspond to
the nodes associated with the pathlength error vector

By including the nodal weighting factors, the nean square
pat hl ength error, MSE, is given by

MSE = p' wp / Zw, [2.37]
where Xw, i s the sumof the weighting factors.

It has been found in a nunber of tests that the rms error is
not strongly sensitive to the weighting factor. Many tinmes a
wei ghting factor of unity at the interror nodes, and one-half at

the rim nodes LProduces a result simlar to that of more
preci sely conputed weights.

2.3.6 Mnimzation of the Mean Square

The conventional |east squares nethod to find Hto

12



mnimze the weighted mean square hal f-pathlength error is
equivalent to pre-multiplying the right-hand side of Eg. [2.35]
by B* Wand setting this to zero. This provides the usual |east
squares “normal equations”

BBWAU+B WBHS=0 [2.38]

Equation [2.38] can readily be solved for H by a nunber of
software programs. The coefficient matrix B* WB is usually of
full rank and well conditioned and the order is at nost only 6.

Once H has been conputed, the best-fit (half)pathlength
error vector can be found fromEq. [2.33] and the mean square
error can be found from Eq. [2.37). The square root of the nean
square error is o, which then can be used in the Ruze equation to

compute the efficiency or gain reduction (Egs. [2.3-2.4]).

The foregoing solution was described in terns of a matrix
formulation to sinplify the presentation. In practice the
solution code perforns the summati ons indicated by the matrix
operations without explicitly formng the matrices. For exanple,
the di agonal weighting matrix Wcoul d be replaced by a vector
consisting of its diagonal elements and all the operations could
be done in terms of this vector. This is favorable both for
numerical conputations and conﬂuter storage. A MATLAB program
to conpute the best-fit rns pathlength error as described here is
i ncluded in Appendix 2-A

2.4 ADDI TI ONAL NOTES

2.4.1 Alternative Fitting Paranmeter Conbinations

When the structure and | oading are symetrical about
the Y Z plane, the finite el ement nodel that provides the
deformation vector Uis often condensed and assenbled to
represent only one side of the structure, such as the side in the
first and fourth quadrants. In this case the first and sixth
fitting parameters (X,and 6,) should be suppressed. This is
dealt wth by replacing the first and sixth rows and col ums of
the matrices in Eq. [2.38] by zeros and then inserting unity in
“the first and sixth diagonal entries of the coefficient matrix.
If it is appropriate to suppress any of the other fitting
paraneters, this can be done in a simlar way.

| f paraneter suppression produces a non zero nean pathlength
error the nmean should be subtracted fromeach termof the
Bathlength vector. That is, any constant term should be renoved
ecause it does not affect the mcrowave phase. Consequently, it
I's reasonable to conclude that "rms" error is actually a m snoner
and should be replaced by “standard deviation.”

13



2.4.2 eductio Square Fit

Best fitting of the pathlength error alnost always
produces a najor reduction of the nean square error, perhaps by
one or nore orders of magnitude. The change in the nmean square
pathlength error as well as the effect of each of the individua
terns in the fitting vector can be readily devel oped. For
exanple, His obtained by solving the follow ng set of |inear
equati ons:

(B* W B)H = ~(B' W A U) [ 2. 39]

where the coefficient matrix and the "right-hand side” are
readily identified. Wth alittle bit of algebra that involves
substituting Has found fromthe equation above .in Eq. [2.35] and
by conputing the weighted best-fit nean square pathlength error
and subtracting the wei ghted nmean square (raw) pathlength error
before fitting, it wll be found that the change in the nean
square AMSE is

AMSE = H* (B WA U [2.40]

That is, the change(reduction) in nmean square pathlength error is
t he dot product of the solution vector and the right-hand side
vector used in the solution. Consequently, each of the six

i ndividual terms in the dot product summation can be exam ned to
assess the contribution of the particular fitting parameter to
the reduction in mean square error.

2.4.3 [nativ lution h

As an alternative to formng and solving the normal
equations, it is possible to condense the procedure when software
is available to solve the |east squares problem by operating
directly on a rectangular (not square) coefficient matrix. To
acconplish this we ask for a solution to the system

BH= -p (raw [2.41.]
~ Equation [2.41] follows from Egs. [2.30] and [2.33]. The
wei ghting factors can be included by premultiplying both_sides of

Eq. [2.41] by the square root of the weighting matrix. The
MATLAB instruction to develop His

H = WB\WR [2.42]
wher e

WB = w'%B
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and

WR = -W? (raw)

2.4. 4 Numbers of Surface Points to |Include

One of the assunptions in the Ruze equation is that
there are a statistically sufficient nunber of points in the mean
square pathlength error calculation. Odinarily the calcul ations
include all the surface nodes of the analytical nodel of the
structure, which is approximately equivalent to the nunbers of
surface panel corners, which is also approximately the nunber of
panels. Although a statistical analysis will not be undertaken
to determne the sufficient nunber of points, the results of a
sinulation will be described. This will show that not too many
points are needed to obtain reasonable results.

The simul ation was based upon the 34-m antenna for which the
panel |ayout was shown in Figure 1-18. There are 528 nodes in
the top surface of the antenna. The procedure was to sel ect
fractional subsets of this number of nodes at random and to
conmpute the pathlength errors for each subset for one particular
case of external loading. The fractions selected produced
approxinmately 1/2, 1/4, 1/8, 1/16, and 1/32 of the original
nodes. The original weighting factors were always retained for
the selected nodes. The tabulations bel ow show the normalized
rms best-fit pathlength error, the nornalized value of the
maxi mum fitting parameter (in this case it was always w,) , and
the nunbers of nodes in the subset.

RVS Pat hl engt h 1.000 0.978 0.964 1.000 0.906 0.827
Maxi mum Par anet er 1.000 0.997 1.000 0.991 1.020 1.026
Nunmber of Nodes 528 266 130 66 34 15

It can be seen that there was not any significant difference
in the pathlength error until nore than 90% of the nodes were
deleted. The maximum fitting paraneter was even | ess sensitive
to the nunber of nodes. On the one hand, there are no
conputational difficulties that would nake it inportant to
process less than all of the nodes, at |east on paper. On the
other hand, when in the field, and especially when in the process
of taking theodolite measurenents of the nodes, it is reassuring
to know that the inposition of a truncated set of nodes need not
introduce a major error.
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APPENDI X 2- A
PROGRAM TO COWPUTE BEST-FI T RMS PATHLENGIH

PATHA2 (Figure A2-1) is.a MATLAB program to conpute the
hal f-pathlength error and the fitting paraneters. The algorithns
are constructed sinilarly t o the process described in Chapter 2.
The bulk data input is defined as the matrix "data," and there is
one row for each node. The first two colums contain the X and Y
coordinates (in a standard coordinate system see Chapter 1).
The third eolumn, which traditionally contains the Z coordinate
from some arbitrary data, is ignored because the code conputes
the Z coordinate from the parabolic equation. The next three
colums contain the displacenent triad, u, v, w The | ast two
colums contain the weighting factor and the node |abel. The
node | abel is arbitrary, and it would be easy to nodify the code
so that only seven colums need be supplied. The focal length
must also be supplied as input. The row vector "nopt" is an
optional input that can be used to suppress any of the fitting
paraneters. The user pronpt explains how this could be used
The six components of H the fitting paranmeters, are ordered as
in the text and the conponents are printed in that order at the
end. Names of variables conputed within the program are not
al ways exactly the sane as in the text. Nevertheless, the
vari abl es shoul d be recogni zable without difficulty.
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Fie P7+ PATHA2 . M

% Dec 9, 1992 this is now PATHA2.M for Appendix 2

% A Matlab programto do pathl ength anal ysis

% the input data requires focus, options and

% (1) (2) (3) (4) (5 (6) (7) 8)
% bul k data(IDEAS format){X Y not used u v w weight |abel]
format conpact _

disp('If there are nonzero options, supply row vector "nopt"')
disp(' (up to 6 terns) °

disp(' such that nopt=[6 1] (alt or [ 1 6])’)

disp(' Wi ll|l suppress X translation and Y-axisS rotation;')

disp(' and nopt=[-2]will be changed to [l 6] (symmetry) ‘)

disp(' for anti-symmetric half, supply nopt=[2 3 4 5}')

disp(' (any order is o0.k.)")

disp('need to have "focus=..", & the n by 8 file "data", & CTRL-Z'

)

keyboard

x=data(:,1) i/ ,y=data(: ,62) ;,u=data(: ,4) ;,v=data(:,5) ;,w=data(:,6) /
wgt=data(: , 7) ;,label=data( :,8); -

z=(x.*x+y.*y)/4/focus;

t2=(x.*x+y. *y+4*xfocus*focus*ones (Size(x))):
rho=-2%focus* (x. *ut+y.*v-2*w, *focus) ./t2;

t=sqgrt(t2); .
%6forn1rho(nemb:rho+A*H H-[X Y Z ~-deltaf/(f+deltaf) thetaX thetaY

f=focus;

zgx=-2*f*x./t2 ;,9zgy==-2*f*y./t2;,0zqz=4*f*f*ones(si ze(Xx

g=%-gzgx -gzgy -gzgz ~—Z.*gzgz(z.*gzgy-y.*gzgz) fﬁz_*g&d&+

1:

snow do cl assical normal equations

for j=1:6,qwa(:,j)=wgt.*A(:,jg;enq,

Am=A'*gwa; Bm=A'*(wgt.*rho): % this took <.1 sec

en=exist('nopt') ;

if (en==1) ) _ o
if (nopt==-2),nopt=[ 1 6 );,end &This "-2" is traditional
nopt =sort (nopt) ;ll=length(nopt) i

for j=1:11
=nopt(j);

Am(:,q)=zeros(6, 1) ;Am(q, :)=2zeros(1,6) ;Am(q,q)=1; Bm(q)=0;
end % on |

end % on if(en==1)

XX==Am\Bm;

rhofit=rho+A*xx;

% get the best fit normals fromrhofit

gz=2*focus*ones (length(wgt), 1)./t; ¥ ganma z

invgz=ones (size(gz)) ./gz;

dn=diag(invgz) *rhofit;

sunw=sum(wgt) ;

%f45%bz)

mm=r hofi t. *wgt;  mmml=mmm®*rhofit;
meansg=sum(mmml) /sumw;
RVBNEWESQr t (meansq)

NEWF=f/ (1+xx( 4))

Page 1




PATHA2 .M

|

DELTAF=NEWF- f

XOFF=XX(1)

YOFF=xx(2)

ZOFF=xx(3)

ROTX=xx(5)

ROTY=xx (6)

fprintf('Sum of weights is $g\n',sumw)
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CHAPTER 3
DEFORVATI ON - ANALYSI S

It was shown in Chapter 2 that the deformation vector a is
fundamental to the conputation of the pathlength error. Antenna
surface deformations are a function of environnmental | oading,
factors such as wind, tenperature, and - of primary inportance -
the effect of the gravity (self-weight) loading on the structure.
The gravity effect is caused by the variable direction of the
gravity vector With respect to the noving antenna surface as the
antenna rotates about the elevation axis. Deformations are
usual ly conmputed froma finite el ement method (FEM) anal ysis that
aﬁpljes the loading to a mathematical (analytical) nodel of the
physical structure. FEM antenna nodels entail thousands of
di spl acenent degrees of freedom' and require the solution of a
correspondi ng set of sinultaneous |inear equations.

Neverthel ess, the conputer processing of antenna structures by
any of a nunber of public or proprietary FEM software prograns is
well within conventional software and hardware capabilities.

The steps of nodel generation, data preparation, and
computer utilization are famliar to alnmost all structura
anal ysts, so they will only be touched upon here. This chapter
w |l provide a brief overview of structural deformation analysis
to orient those who nay be unfamliar with the process. Mre
extensive details are available in many references that span the
recent 30 year time period (e.g., Refs. 3.1 and 3.2). Sone of
the noteworthy devel opnent history will be reviewed first. Then
defl ection analysis will be illustrated for a primtive structure
model .  Both the Force and Displacement nethods of structura
analysis will be considered. Although the Force nethod is not
t he usual apProach I n production conputer analysis software, it
provi des useful insight into the response of |oaded structures
and provides the basis for the antenna structure optim zation
procedure that will be covered in a subsequent chapter. The
D spl acenent nethod is the nore powerful of the two when
aut omated conputer structural analysis procedures are enployed.
Fol low ng these illustrations, analysis procedures wll be
extended fromthe primtive nodel to a nore conplex antenna
structure.

There is one degree of freedom for each possible displacenent
conponent . Antenna structures, for exanple, wll usually have
three translational degrees of freedom at each node (joint) of the
model , corresponding to the displacenent conponents parallel to the
X, Y, and Z coordi nate axes. Three additional nodal degrees of
freedom coul d be considered for structural nodels that include the
rotations about these axes.



3.1 H STORI CAL BACKGROUND

Modern FEM anal ysis systens were preceded by matrix anal ysis
met hods in which the matrices were hand-generated and sol ved by
what ever methods were available at the tine. |In the early days
of structural analysis the solution methods consisted of slide
rul es and mechani cal desk cal culators and the equations were
solved by iteration, relaxation, or elimnation. The energence
of primtive conmputer systens dates to the 1940s and 1950s, but
the process of adapting structural analysis to these conputers
and 1 ndustry acceptance took many years.

The earliest widely distributed paper on matrix structura

anal ysis may have been the 1952 cl assical wehle and Lansing paper

Ref. 3.3) , “Stiffness and Deflection Analysis of Conplex
tructures, " in which the Force nethod of analysis (which has
been supplanted by the Di splacement nmethod in nore nodern FEM
prograns) was used for airfrane analysis. The extent of
conputer analysis prevalent at the time can be deduced from the
author's caution that the anal yst should al ways include check
rows and columms in the conputations, " even If the cal cul ations
are performed by neans of |BM equipment® (Ref. 3.3, p. 681) . The
Di spl acenent nethod, which is the nethod of choice in current FEM
Qrograns, was introduced in 1956 in another classic paper bK

urner, clough, Martin, and Topp (Ref. 3.4). The Force nethod is
based upon the flexibility matrix, which is an influence
coefficient matrix that provides the displacenments at each degree
of freedom of the nodel for independent unit |oads at the other
degrees of freedom The Displacenment nethod is .based upon the
stiffness matrix, which establishes the forces on the structure
m?e? and|ndependent unit displacenment is inposed upon each degree
of freedom

Clough, in a 1960 conference, coined the term "finite
element," and al so introduced the concept of assumi ng rational
shape functions to represent elenment displacenent patterns (Ref.
3.5). Shape functions are the basis of the nmore nodern
| soparanmetric elenment idea. Bernan, a pioneering but sadly
unappreci at ed advocate of conputer processing, was one of the
first to apply matrix conputer analysis to a conplex structure
(Ref. 3.6). He proposed to anaIKze a large antenna structure by
the Force method. The Force method effectively net its end for
| ar ge-scal e production aPpIicat|ons when it was dropped as an
alternative conputer analysis procedure in devel opi ng t he NASTRAN
program (Ref. 3.7) in the late 1960s. Nevertheless, as will be
dermonstrated here, the Force nethod can be preferable to the
Di spl acement net hod for hand anal ysis of nodels that entail only
a smal |l nunmber of conponents. Al so, this method can nost readily
supply the anal yst with information about and insight into
response characteristics of the particular structure. On the
other hand, if the analytical nodel contains nore than a few
degrees of freedom contenporary conputer processing by any
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met hod other than the displacenent nethod is unusual

In 1962, the STAIR program (Ref. 3.8) was devel oped for
analysis of the 120-foot-diameter Haystack antenna. The STAIR
program considered only the three orthogonal translational
degrees of freedom at each of the nodes of the nmodel. The FRAN
program (Ref. 3.9) was subsequently devel oped for the sane
antenna to supplenment the STAIR capability with the three
rotational nodal degrees of freedom Nevert hel ess, it
traditionally has been assuned (and sonetinmes verified) that
bending stiffness, which can be treated in programs that
recogni ze rotational degrees of freedom are higher order effects
and can be ignored in contenporary wel | -desi gned antenna
structures. Today, as deformation tolerances tend to becone nore
stringent, this assunption warrants further investigation. The
64-meter MARS antenna was al so anal yzed by the STAIR program
(Ref. 3.10) at about this tinme. Here, although STAIR contained
an innovative version of what later was to becone known as
"substructuring ," the avail abl e conputer resources limted the
model to a doubly-symetrical one-quarter section of the ful
structure. This limtation has disappeared with nodern conputer
capability. The primtive substructuring capability at that tinme
required a great deal of ad hoc data preparation by the analyst.
More recent progranms attenpt to go as far as possible in freeing
the analyst trom the chores of hand data preparation. As a
matter of fact, conputer autonmation has becone so extensive that
It is possible for a neophyte analyst to execute substantia
conputer processing w thout any real understanding of structura
behavior. The possible consequences of an over-perm ssive
conput er program have actually becone a source of concern for the
structural engineering profession.

3.2 FORCE METHCD

A sinple way to illustrate the Force nmethod is to go throu%h
the steps 1n the analysis of an elenmentary nodel. This allows the
essentials of the nethod to be denmonstrated readily and. the
associ ated conputations to be followed easily.

3.2.1 Analysis of a Three-Bar TrUss

Figure 3-la shows the analytical nodel of a two-dinmensional
truss structure that consists of the three bars labelled 1, 2,
and 3. Specific values of the bar lengths, 1,, L, and L,, are
dimensioned in the figure. Synmbolic external |oads p, and p, are
applied in the directions of the X and Y coordi nate axes,
respectively. The structure is restrained in the X and Y
directions at the left end. The roller shown at the right end
permts nmovenent in the X direction, so that at this end the
structure is restrained only in the Y direction.




All three nodal joints? (at the junctions of each pair of
bars) are assuned to %e connected by pins that are capabl e of
transmtting direct forces along the nenber axes but are not
capable of restraining rotations of the nmenbers. The Ein-jointed
assunption is usually appropriate for antenna franmewor
construction; the neglect of rigidity of the connections between
menbers that can restrain the i ndependent rotations at the joints
is usually of secondary and higher order, rather than primry,

| mpor t ance. Because of the pin-jointed assunption, it would be
nore appropriate to denote these nenbers that resist only the
forces along their axes as "rods" and to reserve the connotation
“pbar® for nmenbers that resist both axial forces and the end
moment couples that result fromrestraining free rotation at the
joints.

The internal forces in the rods that result fromthe
external |oads can be conputed in this case from static
equilibrium The requirements at each node are given by the
three conventional force equilibrium conditions

X Force, = O a=X,Y,2 [3.1]

where the summation is over all of the force contributions at the
node. Therefore, "Force,® in this equation does not distinguish
between internal forces of the menbers acting on the joint,
external |oading, or the reactions that result fromthe restraint
to joint displacenents. From here on, to provide this
distinction, "pP* will be reserved to denote external |oading, n
will be used to denote internal nenber force, and Ror p, will be
used to denote external reaction forces of restraint. Afl of the
foregoing synbols can be particularized by appending subscripts
as appropriate.

_ I ndi vidual free body diagrans of the rods are shown in
Figure 3-1b. Here, n,, n,, and n, are assuned to be tensile
forces on these menbers. By convention, the direction of the
arrows shown at the ends of the menber represent the directions
of the forces applied b% the menbers on the joint. Conversely,
the forces applied to the nenbers by the joints are in the
opposite directions. Although not Indicated in the figure, these
forces can be visualized as acting in the directions opposite to
t hose shown by the end arrows and in each case would tend to
stretch the member, consistent with the assunption of menber
t ensi on.

The conponents of the nmenber force acting in the direction
of any of the coordinate axes have the nmagni tude of the nenber

ZnNodes" and "joints" are considered here as interchangeabl e
terns.




force times the direction cosine wth respect to that axis.
Consequently, the equilibriumconditions can be witten in terms
of the direction cosines and the as yet unknown rod forces. For
exanple, at the upper joint of the truss the equations of
equilibriumin the X and in the Y directions follow

P, - n; COS ¥, + N,Cc0S Y =0 [ 3. 24]
-P, - n, COS ¥,y - N,COS Y2y =0 [3.2b]

For exanple, the termcos v, refers to the direction cosine of
rod 1 with respect to the X axis. Al so, a positive signis
associated with forces in the positive X and Y directions. Her e
t he apﬁropriate signs for n, and n, are determ ned by inspection
fromthe arrow directions on the free body diagrans.

The direction cosine of a rod nenber with respect to a
articular coordinate axis is given by the Brojectlon of the
ength of the nenber on that axis divided by the nmenber |ength.

For exanple, cos ¥, = 18/30 and cos v, = 24/30. It can be seen
t hat when direction cosines in this formare substituted into
Egs. [3.2], or any of the equilibrium equations that can be
witten at the other nodes, the ratio n,/L, will appear for each
rod i. Then by defining new terns A, = n;/L, called the "tension
coefficients" (Ref. 3.11), nenber force conponents are
represented as the product of the tension coefficient and the
projection of the nenber length along the correspondi ng
coordinate axis. Using the tension coefficients instead of Eq.
[3.2], the equilibrium conditions can imrediately be witten as

-P, =247, - 24A, =0 [3.3b)

Al though it was sinple to determne the signs in these
equations by inspection, the signs above could readily be
established automatically. One way to do this would be to app
a conceptual shift of the origin of coordinates to the center o
each node at which the equilibriumequation is witten and to
consi der whether or not the projected lengths are in the positive
or negative coordinate directions with respect to the new origin.

We now consi der two independent |oading cases, where the
loading is P, = 1.00 for the first case with p, = O and the
loading is P, = 1.00 for the second case with p, = O The
followng is readily obtained fromEgs. [3.3]:

Load Reference Eduation
First Case




A= =2, 3.3b
A, = -P,/50 3. 3a
Second Case

A, = 32X,/18 3. 3a
A, = -18 P,/ (24%50) 3.3b

A; can be found fromequilibriumin the X direction at the right
end support. That is

"50%;3- 32l2 = O; or k3 = '0. 64 sz

The equilibrium equations were established by assum ng all
the rods to be in tension. \Wenever the tension coefficient is
conputed to have a negative algebraic sign the inplication is
that the rod force represents conPression. The analysis for the
rod forces is conpleted in the follow ng table:

n p, = 1.00 p, = 0.00
ROD LENGTH
e
A n =LA A n =LA
1 30 0.0200 0.60 -0.0267 -0.80
2 40 -0.0200 -0.80 -0.0150 -0.60
50 0.0128 0.64 0.0096 0.48
3.2.2 Displacements of a Three-Bar Truss

Hook's Law can be used to conpute the extension of an
elastic rod subjected to a tensile |oad,
shortening of a bar due to a conpressive |oad.

c =Ee

in which

o6 is the stress (force per unit area)

e is the strain (change in length per unit

or equivalently
The law'is

[3.4]

| engt h,

E is the nodulus of elasticity (Young's nodul us)

Since the strain is non-di nensional,
(W will

sane units as the stress.

her e,

rather we wll

6

t he nodul us wl |l
not

t he

_ _ ~have the
assi gn di nensi onal

assune that di nensiona

units

quantities have




consistent appropriate units.) Representing the rod area as A
and the extension as e, in terns of the prior notation, we have

c =nlA [3.5]
and

&= e/L [3. 6]
Then fromEgs. [3.4-3.6], it follows that

e = nL/AE [3.7]
For illustration, arbitrary values are assigned for the rod

areas, P, and p,, and E = 10 x 10°. The computations for the rod
extensions are ‘conpleted in the table bel ow':

RCD L A P, = 2 X 10 p= 0.0
P,=0.0 P, = 4 x 10*
n(x107*)"- e n(x1009) e
1 30 2.0 1.2 0.018 -3.2 -0.048
2 40 3.2 -1.6 -0. 020 -2.4 -0.030
3 50 4 1.28 0.016 1.92 0.024

A physical requirenent for the deforned truss is that the
configuration with the applied l[oading nust provide for fitting
the extended rods together wthout ?aps or interference. The
application of this principle is illustrated conceptually in
Figure 3-2. The effect of -the second | oading case-is considered.
Al though the scale of the rod extensions has been greatly
exaggerated, the f|%ure is qualitatively accurate. The approach
Is to draw arcs with radii equal to the original lengths and to
| ocate the new positions of the nodes at the intersection of the
arcs. The restraint in the Y direction provides a sinplification
here because the displ aced E05|t|on at node 3 requires the new

| ocation to be shifted by the extension of rod 3 in the positive
X direction (u; = 0.24) and to have no displacement in the Y
direction (v; = Q. The new posjition of node 2 is found at the
intersection of an arc with radius of 1, -0.030 drawn fromthe
new | ocation of node 3 and an arc with radius of 1, -0.048 from
the fixed location of node 1. Consequently, the new |ocation of
node 2 shows that U,is positive and v, i s negative with an
obviously larger magnitude than U,

In the years before conputerized structural analysis
mat ured, graphical analysis was frequently the nmeans used to
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compute truss deflections. A science of 8raphic statics was
devel oped to sinplify the procedure just described and to
overconme the inpracticality and inaccuracy of graphics that
results fromthe several orders of magnitudes of differences in
extensions when conpared with the original lengths. Essentially,
the need to represent menber lengths as radii was elim nated and
the arcs, such as in Figure 3-2, were replaced by tangents drawn
Qerpend|cular to the original directions of the rod menbers.

hen a subseguent correction diagramwas devel oped to ensure that
the deflected configuration passed through the restrained nodes.
The ?raphlcal procedures tended to beconme very difficult with
conpl ex planar trusses and were hopel ess when applied to three-
di nensi onal space. Neverthel ess, understanding of the

met hodol ogy of graphi cal analysis can provide an appreciation of
structural behavior that may not be available from the much nore
conprehend ive, but abstract, nathenmatical analysis.

There are several ways to conpute deflections analytically.

One wel | -known nethod is the Method of Virtual Work. This is
based qun the principle that in a conservative structural system
the work done by the external loading is equal to the interna
energy stored within the structure. Note that work and energy
are dinensionally equivalent and that work is the product of
force and the component of displacement aligned with the force
(the dot product). Wen a hypothetical ®virtual" load is applied
"to the structure, this loading will cause "virtual® forces on the
internal nmenbers of the structure. Assune that the virtual
loading is applied first and that the real loading is applied
subsequently.  Then the added external virtual work wiil be the
product of the virtual |oading and the displacenents of the
'real" loaded structure. The added internal energy (work) of the
menbers wi Il be the product of the internal forces caused by the
virtual |oading and the extensions caused by the real_loadln?.

In practice, it is customary to appIY a single-unit virtual [oad
in the direction of the desired di splacement conponent at any
node whose displacenent is to be determned. Therefore, equating
the external virtual work to the virtual internal stored energy,

P,A, = I n,e; [3.8)

in which P, Is the external virtual |oad

A; Is the displacement of the real structure

n, Is the internal menber force for the virtual |oad

ey Is the extension of the menber for the real |oad
and the sunmation on the right-hand side is taken
over all menbers of the structure

_ Equation [3.8] applies in a generalized sense. That is, it
i ncl udes generalized forces (forces and nmonents) and generalized
di spl acenents and extensions (translations and rotations).
Therefore, work and energy are the products of forces tines

8




translations, or _
structure consisting entirely of
[3.7] and the displacenent

vi rtual

or el se,

conponent

nonents tines rotations.
rod menbers,

In the case of a

ex 1S given by Eq.
at any point where a unit

virtual load (P,= 1.0) is applied parallel to that conponent
becomes
u, = £ n,n; L/AE [3.9]

axis (u, v, or w |,
and real

| oadi ng,

where u, i s the displacenment conponent parallel
and n,and n;, are the rod forces for the
respectively.

tothe X, Y, or Z

Then the displacenents

node 2 for the Three-Bar Truss can be developed in the
foll owi ng table:

RCOD L/AE n:n,L/AE (x10%
(xIO) (xTo-")
u \' u \'
1 1.50 -3.20 0. 60 0. 80 -2.880 - 3. 840
1.25 -2.40 -0. 80 0.60 2.400 -1. 800
1.25 1.92 0. 64 -0.48 1.536 -1.152
z 1.056 -6.792

Therefore, at node 2 we have
u, = 0.01056
v, = -0.06792

whi ch can be_coqgared gualitatively with the graphical
construction in Figure 3-2. Note that Eg. [3.9] can be
constructed to get the deformation vector d (Egq. [2.20]) at each
node of the structure. Also the terms L/AE in the second col um
of the table above are referred to as “el ement flexibilities."
These ternms represent the extensions of the rod elenents for unit
menber | oads.

3.2.3 Displacenents by Mtrix Fornul ation

A vector n,in Eqg. [3.9} represents the internal menber
forces for a unit external oad|n? applied at a specific node in
a specific direction. Then it follows that any particular vector
of internal forces for some real external |oading P, can be
constructed as the product of a matrix B with colums to contain
an appropriate set of n,vectors post-nultiplied by the real
| oading P;. The matrix B will have the form

B=I[nmn,. .....0.n] [3.10]




where each n; is the internal force vector for a unit externa
|oad at a particular degree of freedom A vector of internal
forces for a real external |oading can be constructed as

n, = B { p} [3.11]

and matrix of "“real™ internal forces nfor a set of externa
Ioadln?s I's obtained by substituting a matrix P on the right-hand
side of the above equation to contain all the B, col ums of
external | oading. hat is

n=58rp [3.12]

The matrix of internal nmenber forces for a set of externa
virtual unit virtual loads is actually the B matrix post-
maltiplied by an identity matrix, which is equivalent to B.

Al'so, a diagonal matrix f, called the “element flexibility
matrix," is constructed to contain all the nmenber L/AE
erX|b|||2y terms. Equation [3.9], in conjunction with Egs.
[3.11] and [3.12], can then be witten in matrix formto provide
U, the matrix of displacement vectors for the set of externa

| oadings P as foll ows:

u=B"£BP [3.13]

The first three matrices on the right-hand side of Eg.
[3.13] are usually conbined and called the structure flexibility
matrix ¥, so that we have

u=FP [3.14)
i n which

F=B"FB [3.15]
and the row orders of U P, B, and F are equal to the numbers of
degrees of freedomin the nmodel (which is approxinately three

times the nunber of unconstrained nodes for a pin-jointed
t hree- di mensi onal structure).

To illustrate, using data in the table followi ng Eq. [3.9],
B. 0. 60 0.80 , f = 10° 1.50 0.00 0.00
-0.80 0.60 0.0 1.25 0.00
| 0.64 -0.48 | 1 '0.00 0.00 1.25

and fromEq. [3.15] the conputation provides

F =10 0. 1852 -0.0264
-0. 0264 0.1698




Then, from Egq. [3.14], wth
P=10' *[12
2.4

u=FP=107%* 3.704 1. 056
| -0.528  -6.792

It can be seen that the last colum of u is consistent with
the conputations in the previous table.

3.2.4 statically Indeterm nate Structures

Menmber forces in the foregoing analysis of the Three-Bar
Truss were statically determnate. That is, there was a one-to-
one match in the number of unres,trained displacement degrees of
freedom (two at node 2 and one at node 3) and the nunber of
internal rod forces to be found. Consequently, there was exactly
one equilibrium equation available for each internal force that
was to be determned. Specifically, the truss, which was two-
dinensional, had a total of six degrees of freedom (two per
node) , of which three were restrained (two at node 1 and one at
?odedS), | eaving a renminder of three unrestrained degrees of

reedom

If there were nore degrees of freedom than rod nenbers, the
structure would be unstable. For exanple, if the Y restraint.
were renoved at node 3, there would be four equilibrium equations
and only three rods. On the other hand, if there would be nore
rods than unrestrained degrees of freedom say as for the truss
in Figure 3-3, the rod forces (7) could not be uniquely found
fromthe insufficient (5) equations of static equilibrium and the
structure would be statically indetermnate. In this case sone
of the rods could be considered as redundant and the structure
woul d be stable with these rods renoved. A requirenent for
static equilibrium for a two-dinensional structure is that the
nunber of rod nenbers should be equal to tw ce the nunmber of
nodes mnus the nunber of restrained degrees of freedom The
nunber of rods for a. three-dimensional truss structure should be
equal to three tinmes the nunber of nodes m nus the nunber of
restraints. This is necessary but not a sufficient condition for
statically determnate truss structures. It is insufficient
because a structure neeting this criteria could be statically
indetermnate in sone local region and unstable in another.

The procedure to analyze a redundant truss structure is to
reduce it to a statically determ nate system by conceptual |y
cutting selected redundant rods or by renoving over-restraining
reaction conponents. The forces in the cut nmenbers or the
renoved restraints are then treated as additional |oads on the
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reduced structure. The displacements of this statically
determ nate variation of the structure can then be analyzed to
determ ne the hypot hetical gaps between the cut nenbers or the
movenent at the renoved reaction points. Setting these gaps or
movenments to zero provides the neans to eval uate the redundant
menber forces or reactions. The procedure will be outlined for
the truss in Figure 3-3.

Figure 3-3b shows the statically determ nate variation of
the truss. Rod 1 has been selected to be cut and the Y reaction
at node 1 has been selected for removal. The elenent flexibility
matrix f is constructed as described previ ousl?/ for the seven
bars, but the B matrix is partitioned vertically into the colums
B, associated with the nenber forces for the | oads fromthe
sel ected redundant and into the colums B, associated with the
actual external loads. That is

B=|3 s) ‘ [3.16]

Carrying out the operations of Eg. [3.13], the displacenent
vector wll contain u, associated with the redundant forces e,
and u, associat ¢ with the external |oading PC?. The result is
1T

B'f B, B,' f B, P,
[3.17]
B, f B, B f B, pr
Setting u, equal to zero provides the follow ng equation
that can be solved for p,

v,

U,

(B, f B, P, = -[B,t f B,] P, [3.18]

The row eguations in the bottompartition of Eq. [3.17] can
be used to produce v, after solving Eq. [3.18] for P,. Also, by
expressing P, in terms of B, Eq. [3.12] shows how the nenber
forces of the statically determnate variation are changed
because of the redundant effects. The selection of redundant is
an analyst’'s choice; the preferred selection will be the one that
results in the smallest changes due to the redundancy.

In the exanple truss. of Figure 3-3 the p, vector contains
the indices n, and R, as indicated in Figure 3-3b. B, contains
two colums, one for each of these indices. The order of B, is 7
rows by 2 colums. The order of B, is 7 rows by as many colums
as there are external loadings. The matrix f will have the order
of 7 rows and 7 colums. wu, will have two conponents, one for
the gap in rod 1 and one for the novenent at R,. U, can have as
many as one row for each unrestrai ned degree of freedom and
colums to match »p,.

Here, the order of the coefficient matrix used in the
solution of Eq. [3.18] is two, which is equal to the order of the
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redundancy. This illustrates a conputational advantage of the
Force method conpared with the Displacenent nethod; i.e., the
order of linear simultaneous equations to be solved in the Force
method is only the order of the redundancy, while, as it wll be
shown subsequently, the order in the Displacenent nmethod is equa
to the nunber of unrestrained degrees of freedom

For exanple, if the D splacenent nethod were used to solve
this problem the coefficient matrix would be of order 5. Thi s
woul d not be a trivial problemto solve w thout conputer aid. A
drawback in the statically indeterm nate case, however, is that,
since the selection of redundant is arbitrary, it is necessary
to choose an %fpropriate set of redundant. An inaPpropriate
selection could lead to nunerical conditioning problenms and
I naccurate results. There have been attenpts to automate
treat ment of redundant by the Force nethod (Ref. 3.12), but the
nunmerical effort is cunbersone.

3.2.5 Qher Structural components

Ref erence 3.1 discusses the extensions to treat other
structural elenents by the Force nmethod. Some of the structural
conponents for which elenental flexibility matrices are avail able
in addition to rods are beans, triangular and rectangular plates,
shear panels, and three-dinensional tetrahedra.

The method is particularly sinple when applied to beans,
such as in a building frame. TFor exaqple, a sinple ‘beam el enent
of span "a" is shown in Figure 3-4. he internal forces for
which the element flexibility is developed are the bending
monments m, on the left side and m, on the right side. The
directions shown - clockwi se on the left and counterclockw se on
the right - indicate the sign convention for positive bending
moments. Neglecting the effect of deflections due to shearing
strain energy (which could be included if desired), the
flexibility matrix of a beam element can be shown to be

f = a/(6EI) [2 1 |
la 2 ) [3.19]

where | is the bending nonent of, inertia and f provides the end
rotations for the effect of end nonents.

Figure 3-5 shows a sinply supported beam with a transverse
load P at the center. It is modelled by two beam el ements, each
of span a = L/2. Strictly speaking, when conputing the
deflection at the center, elemental flexibility matrix fof the
beam structure woul d be a four-by-four diagonal block matrix with
two-by-two flexibility matrices {(according to Eq. [3.19]) on the
di agonal, and the B natrix would have four conponents to
represent the nonents shown in the figure. However, a
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sinmplification is available by taking into account that the
nmonents at the two suPports are zero and that the nonment at the
junction of the two elements is the same on each side of the
centerline. Then the first and fourth rows and colums of F can
be elimnated and the renmaining two diagonal terns can be sumed
into a single term  Therefore, we have the sinplifications
B=L/4 and f = L/(2El) * (2+2)/6 = L/(3EI). Performng the

mul tiplications of Egq. [3.15] we have F = L3/(48E1), which is a
wel | -known result that has been obtained here al nost by
I nspection.

3.3 DI SPLACEMENT METHOD

It was shown previously that with the Force nmethod it was
first necessary to establish the menber forces to conpute the
extensions and then after that the displacenents could be
obt ai ned. In contrast, the Displacement nethod finds the
di spl acenents as the first step and fromthese can provide the
menber forces as a second step

- The key matrix of the Displacement matrix is the structura
stiffness matrix K By definition the stiffness nmatrix contains
the forces that nust act on the structure when unit displacenents
are inposed in turn on each particular degree of freedom and all
ot her degrees of freedomare restrained (by the forces) to be
zero.

The Displ acenent nethod is not considered to be as readily
adaptable to intuition as the Force nethod; it is often possible
to visualize the displacenment vector, which is one colum of the
flexibility matrix, caused by a particular unit load. For the
Di spl acenent nethod, the forces that represent one colum of the
stiffness matrix that are necessary to provide a single unit
dLspIacenent whil e preventing all other displacenents are not as
obvi ous.

The fundanental Displacenment nethod relationship, which is
the dual of Eg. [3.14], 1Is

P* KU [3.20]

An initial conputation task is to generate K, which is a
summation of the stiffness matrices k of all the conponent
structural menbers. Then, when the external loading P is
assenbled, Eq. [3.20] is solved for U One frequently enpl oyed
met hod of solution wll be described in Section 3.3.4.

Whenever the stiffness matrix K and the flexibility matrix F
represent a matching set of degrees of freedom these matrices
forman inverse pair. Both natrices are symretrical, which
inplies that the displacenent at degree of freedomi for a unit
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| oad at degree of freedom| is equal to the displacenent at

degree of freedomj for a unit |load at degree of freedomi.

Correspondingly, the force at degree of freedomi for a single

uni t disPIacenent at degree of freedom| is equal to the force at

?egrge of freedomj for a single unit displacenent at degree of
reedom i .

A maj or advantage of the D splacenent nmethod is that
redundant do not have to be counted or identified and
redundancy does not affect the conputational procedures. On the
other hand, the solution of Eq. [3.20] for U could entail the
solution of a system of |inear equations in the order of
t housands, which is a highly conputer-intensive operation. The
order of the linear equation set to be solved in the Force nethod
could be trivial in conparison.

3.3.1 Rod Elenent Stiffness Matrix

Equation [3.7] can be rearranged to provide the force ni na
rod menmber for-a known extension e-in terms of the length L,
cross-sectional area A, and nodulus of elasticity E hus

n = AE/L e [3.21)
and we have the stiffness relationship for the rod elenent, e.g.
n=ke [3.22]

where k = AE/L, is sonmetinmes referred to as the "spring constant"
of the rod. That is k is equal to the force to provide a unit
ext ensi on.

"Figure 3-6 shows an extended rod subject to force n. The
rod is connected to the nodes a and b as shown in the figure and
a local coordinate systemis aligned with the axis of the rod.

The extension of the rod is e = u,-u,, Where the arrow shows the
positive direction of the local axis displacements, u. Then the
stiffness relationship for the rod in the | ocal coordinate system
i's

n==%ki{1 -1) (u)
(u,) [3.23]

The conponents of a transformation fromthe [ocal u
coordinate systemof the rod to a two-dinensional global X, Y
coordi nate system of a structure are shown in Figure 3-7. In
Figure 3-7a the conponents of the extension u along the [|ocal
axis are resolved into u and v along the X and Y axes,
respectively. In Figure 3-7b the conponents of the rod force n
are resolved into the conponents n, and n, al ong the
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corresponding axes. Direction cosines y, and y, are identified as
cos O, and cos O, respectively. Then, performng the
transformations at both ends of the rod (ends a and b of Figure
3-6), we have

{k} =0y v o0 0 ' {u,)

{u,) | 0 0 Y Yy | {v.) [ 3. 24]
{u,}
)

(%.) { )

{n,) =n {7

{ng) (=Y [3.25)

[ ny) Yy )

By substituting Egs. [3.24] and [3.25] in Eq. (3.23], the
result can be given exactly by Eg. [3.22], but nown and e are
expressed in the global coordinate system as

n = ({n,, n Ny, n, }* [ 3. 264a]

ya

e = |u, 'va u, v, ]t [3.26b]
and k in Eq. [3.22] is replaced by

k= | k, -x, | [3.27)
| -k, k, | ‘

in which for a two-dinensional problem

k, = X, = ag/L | 1% Ty | [ 3. 28]
VYy &Yy J

I n three-dimensional space with coordinate axes X, Y, and g2
Eq. [3.22L is again valid, however the pairs n, and n, are
y

repl aced the triplets n,, n, and n,, and the pairs u and v are
replaced by the triplets u, v and w, and k, in Eq. [3.28] is
J‘ replaced by
[ 8.y Ty Y¥e |
k, = ks = AE/L | %y Ny Y. | [3.29)
A e VoY )
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The stiffness matrices of the rods in the Three-Bar Truss

W”bll be devel oped explicitly with the help of the follow ng
tabl e:
RGD L/ AE AE/L | v, Yy oy Yy TyYy
x 10° X 10-°
1 1.50 0. 6667 | 18/ 30 24/30 0.36 0.48 0.64
2 1.25 0. 8000 | 32/40 -24/40 | 0.64 -.48 0.36
3 11.25 lo.s8000 Is0/50 |o 1.00 0.0 0.0
Then, fromEqg. [3.28] the k, partitions of the rod stiffness
matrices are conputed as:
Rod 1 k,= 10° [ 0.240 0.320|
| 0.320 0.420)
Rod 2 k,= 10 [0.512 - 0. 384]
| -0.384 0.288/
Rod 3 k, = 10 | 0.800 0.0001
l 0.000 0. 0001

The above 2-row, 2-columm partitions of the rod stiffness
matrices can be expanded to 4-row, 4-colum stiffness matrices
according to Eq. [3.27]. The elenent stiffness matrices are
square and synmetrical. They will be used to construct the
structure stiffness matrix in the followng section, and it
follows that this will also be square and symmetrical.

3.3.2 Structure Stiffness Matrix

The stiffness matrix of the full structure will have row and
colum indices for all of the degrees of freedom of the

structure. For exanple, the colum indices for the Three-Bar
Truss wll represent the displacenents (u, v, u, V,u; vy) . The
row indices wll represent the matching set of external forces or
reactions (P, Py P PpPusPy). The stiffness matrices of the

rod element are entered into the structure stiffness matrix
according to the correspondence of the element indices with the
structure indices. Specifically, the element stiffness matrices

will be entered to correspond wth the follow ng structure
i ndi ces:

Rodl [ u v, u, v, )

Rod?2 [ wu, v, u; v; ]

Rod3 [ u v; u, v; ]
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When the stiffness matrix for nore than one el enent
contributes to a particular cell of the structure stiffness
matrix, the contributions are added. Assenbly of the structure
stiffness matrices as just described is called the "pirect
Method" of assean%. There are alternative ways for assenbly,
but the direct method is prevalent.

The assenbled structure stiffness matrix K, for the Three-
Bar Truss becones

K, = 10° x
! ‘ ]
1. 0400 0. 3200 - 0. 2400 0. 3200 -. 8000 0. 0000
0. 3200 0. 4267 -0. 3200 -0. 4267 0. 0000 0. 0000
-0. 2400 -0. 3200 0. 7520 -0. 6400 -.5120 . 3840
-0. 3200 -0. 4267 -0. 0640. 0.7147 . 3840 -. 2880
-0. 8000 0. 0000 -0.5120 0. 3840 1.3120 -. 3840
0. 0000 0. 0000 0. 3840 - 0. 2880 -.3840 . 2880J

The rank of &, above is three, which is equal to the nunber
of rods. Since the matrix is of order six (two times the nunber
of nodes) , it has three singularities. Physically, these
singularities represent possible rigid body nodes of the
structure. A rigid body node represents a displacenent vector
that could occur-in the-absence of external forces. For exanple,
three possible rigid body nodes for this structure could be: 1) a
translation in the X direction, 2) a translation in the Y
direction, and 3) a rotation about an axis perpendicular to the X
Y plane. Consequently, X,, since it permts rigid body
di spl acements, is referred to as the "unrestrained" stiffness
matrix. It is necessary to apply restraints to this matrix to
renmove the singularities.

The restraints for the Three-Bar Truss can be found by
i nspection of Figure 3-la. These are the u and v displacenents
at the left end node (node 1), and the v displacement at the
right end node (node 3). These correspond wth the first,
second, and sixth rows and colums of X,. Renoval of these rows
and colums would result in a stable structure with a non-
singular stiffness matrix of rank 3. This is consistent with the
criteria given in Section 3.2.4 that the nunber of rods (three)
shoul d egual twi ce the nunber of nodes (2 x 3) mnus the nunber
of restraints (3).

The singularities in the unrestrained stiffness matrix can

be treated by rewiting Eq. [3.20] in partitioned form The
partitions in the follow ng expression use the subscripts r and u

18




to represent restrained and unrestrained. The |oad vector P is
partitioned into B, the reactions at the restrained degrees of
freedom and P, the external loads at the unrestrained degrees
of freedom The di splacenent vector is partitioned into u, and
U,to correspond with the |oad vector. Then, the partitioned
formof Eq. [3.20] is

{P,) = [ K,, K., | Qu, ) [ 3.30]

{P.) . K, | U)

By expanding the |ower row equations and rearrangi ng we have
K. U, =P, K, U, [ 3.31]

whi ch can be solved for U,since P,and u, (if not null) are

prespecified. Solution of Eq. [ 3.31] is the major conputational
task of the Displacenent nethod.

Once the displacenents at the unrestrained degrees of
freedom are found fromthe equation above, the reactions can be
recovered from the upper row equations of Eq. [3.30]. Thus

P, = K. U, + KU, [3.32]

Specifically x,, for the Three-Bar Truss is obtained by
renoving the first, second, and last row and colum of k. = Then
the remaining three rows and colums are associated with the
unrestrai ned displacements (u, v, uw). This matrix beconmes

[ ]
0.7520 -0.0640 -0.5120
K. - 10° X -0. 0640 0. 7147 0. 3840
-0.5120 0. 3840 1.3120

J

Then the unrestrained displacenents of the Three-Bar Truss
are obtained by solving

KU, . [2x10 0 1
0 - 4X104J

fromwhich the result is

{u,} L [ 3.704 1.056!
{v;}) = 10° x |-0.528 =-6.792|
{u3) [1.600 2.400!

~The final steps of the Displacement nethod are to conpute
the internal forces in the menbers (which can be used to
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determne the stresses). This can be acconplished readily from
Eqs. [ 3.23] and [ 3. 24].

3.3.3 1nput Data for cComputer Analysis

The sinple exanple of the Three-Bar Truss structure covered
the typical steps that would be performed by a finite el enent
conputer program  These programs operate on personal conputers,
wor kstations, or mainfrane conputers to analyze antenna
structures with many thousands of degrees of freedom and nmenbers.
Prior to the use of these progranms the analyst nust devel op an
appropriate idealization of the actual structure, ﬁrepare a
mat hemati cal nodel of the idealization, either by hand notes,
or by draw ngs and sketches, or wth autonated assistance. The
mat hemati cal nodel is converted to input data for the conputer
program in the form of records that resenble punchcard input,
which is a carryover fromthe days when the input to a conputer
was primarily in the form of the, now archaic |BM punchcards.

In preparing the data, the anal yst can suppl ement or replace
manual data generation and enpl oy preprocessor prograns,
conput er-ai ded design, or automated data generation procedures.
The existing capabilities to assist in input data are too
w despread and diverse to be covered here. Instead, we wll
consider the typical input data itself w thout being concerned
with the machinery to develop it.

The essential input data for static |oading deformation
anal ysis consists of the follow ng descriptions as a basis:

Nodal geonetry (coordinates).

El ements and connectivity (type and associ ated nodes).
Restrai ned degrees of freedom

El ement properties (cross-sectional).

Material properties (with nodulus of elasticity as a
m ni mum and other material constants such as density,
thermal coefficients, and terns of the nateria
stiffness matrix when necessary).

f) Ext ernal | oadi ng.

D OOT D®

Figure 3-8 shows a specification for the input data of a
MATLAB finite elenent analysis program The input records are
the rows of the specific matrices provided for each type of data.
The integer nunbers arranged above the first row of each matrix
indicate the colum of the matrix for the entries. Additional
data that can be input relate to the user's output requests, such
as displacenents, reactions and forces. The output of even a
nmoderate size of structure nodel can be volum nous, and it IS
worthwhile for the user to be selective and to request only
critical information.

This data format is simlar to that of the NASTRAN program
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except that the NASTRAN input is not contained in matrices, but
in individual records with a menonic in the colums of the first
field of each record. NASTRAN records are 80 "card" col ums_ wi de
and are subdivided into ten fields of eight colums each. The
NASTRAN program and the input card format are w dely known and
understood.  Consequently, a closely related format was adopted
for the MATLAB structural anatysis program  The NASTRAN i nput

records can al so be conpressed to provide the sanme information in
a free-field form

Sonme notes on the data contained in the particular matrix
col ums of F|%ure 3-8 are given in Table 3-1. The specific data

input to the finite elenent ongranlfor anal ysis of the Three-Bar
Truss are shown in Figure 3-

3.3.4 solution of the Load bisplacement Probl em

In a small problem such as the Three-Bar Truss, or even one
that is one or two orders of magnitude larger, no special
techniques are needed for the progranmng strategies, data.
management, or the nunerical algorithmns. However, production
type structural analysis conputer prograns are devel oped wth
careful, and often innovative attention given to efficient and
effective ways to handle and process the sonetines overwhel m ng
amount of associated data. Historically, the scope of finite
el ement structural analgsis conplexity and conputer capability
have kept pace with each other, and both have grown rapidly.

The solution of Eq. [3.20] represents the maximum inmposition
on the conputer capability in terns of data storage and
computation time. This phase of conputer execution can be one-
half or nore of the total. At the outset, recognizing that the
structure stiffness matrix and the elenent stiffness matrices are
synmetrical provides one major reduction in storage. Then
recognition of the sparse nature of the stiffness matrix provides
anot her way to condense the stora%e space. The matrix is sparse
because the nodes represented within the stiffness matrix are
connected only to adjacent nodes. Therefore, each single row
assigned to the stiffness matrix to represent one degree of
freedom could contain only the one or_two dozen coefficients
associated with the adjacent nodes. This rowwll have as nmany
colums - possibly thousands - assigned to it as there are
degrees of freedomin the structure. Therefore, the roww Il be
nostly enpty excegﬁ_for the relatively few coefficients for the
adj acent nodes. his enptiness leads to stiffness natrices that
can be less than 1 percent popul ated.

Conceptually, the solution of the |oad deflection equations
coul d be expressed as

u = Kp [3.33]
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~However, the conputation of the inverse of the stiffness
matri x could be a form dabl e task except for small matrices of
orders less than a few hundred. One of the preferred ways to
solve Eg. [3.20] is to deconpose the stiffness matrix into
triangular factors by Gaussian elimnation. The factors are
applied in two subsequent steps - forward substitution and
backward sol ution - to produce the displacements. The procedure
I's outlined bel ow

The factorization produces
K=L1U [ 3. 34]
where L and U are |lower and upper triangular matrices.

It is customary to wite Eg. [3.20] in the form

KU = P ‘ [ 3.20a)
where P is referred to as the “right-hand side.” Therefore, Egs.
[3.20a] and [3.34] provide

LUU=P [ 3.35]

Next the equation
LY=P [ 3. 36]

Is solved for Y. This step is the "forwara substitutional step
and it is an explicit solution step that proceeds downwards al ong
the lower triangular matrix to produce v,, Y,, etc. from the
preceding values. The next step is obtain U by solving

UuUu=Y [3.37]
Thi s steP I's the backward "substitution"™ step and proceeds
upwards tfromthe bottom of the upPer triangular matrix to
produced the | ast conponent of U ftirst and each next higher
conponent in turn from those already determ ned.

The maj or conputations in this procedure are to deconpose
the stiffness matrix into the factors. Once the deconposition
Is available, the forward and back substitution to process
nunbers of right-hand side vectors is perforned with only a
relatively small effort.

One way to performthe deconposition is to start with the
upper triangular portion of K and to nodify each row of the

triangle by a subtractive correction that is contributed by the
rows above the row that is being nodified. The algorithmis

Wy = Ky - Yo' Mas Ugy/Ugg [3.38]
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The lower triangular matrix L is obtained by dividing each
row of ¥ by its diagonal term and taking the transpose. conmmon
variation of the Lu deconposition is to let u be the transpose of
L and introduce a matrix D, _which contains the reciprocals of the
di agonal s of the prior y. This leads to the well known LDU
deconposition of Kin which uwis the same as L', both have unity
on the diagonals, and only one of them has to be stored.

The deconposition as descri bed above entails dividing each
row by the diagonal of that row to obtain the lower triangle. A
very small divisor could be a warning of instability of the
nunerical process or also of instability of the physical
structure.  The nunerical singularity (Ref. 3.13) is defined as
the smallest ratio of the diagonal divisor of any row of the
deconposition to the diagonal of the original stiffness matrix of
the row. This diagonal ratio provides an easily obtained
estimate of the condition nunber of the stiffness matrix; and the
rule of thunb is that the absolute value of the exponent of the
condi tion nunmber indicates the number of digits of accuracy | ost
in the conputations. W have found that nodels are suspicious
when the magnitude of the exponent of the diagonal ratio is
greater than about five, but that three or |ess can be considered

robust”. In particular, when the diagonal ratio approaches zero
ésay 1*107'° or worse) , it is possible that the structure has
egenerated to a mechani sm

The deconposition will not preserve all of the sparsity of
K. It can be seen fromEqg. [3.38] that although a particular X;
is null, there will be a contribution to the deconpgsition if any
u,; and u,, froman upper row q are both not zero. The
contribution is sonmetimes referred to as "fill," which results
from*“rain” falling down froman upper row in the “sane col um.

3.3.5 Matrix Bandw dth and Wavefront

According to Eq. [3.38], if Kij is enpty and if there are no
terms in colum j of the stiffness natrix above the termin row
i, the deconposition will be enpty in position ij. Thus the
original sparseness of K will be preserved in this case. Large-
caPac!ty computer progranms for structural analysis operate nost
efficiently when the conputational procedure is fornulated to
capitalize on sparseness. Sparseness is used to advantage by
confining the conputational operations to a conpact region
densely popul ated with non-zero coefficients and by omtting
operations for the enpty region in which the coefficients are
zero.

ne neasure of sparseness is the matrix bandwi dth. The
hal f - bandw dth at any row of the stiffness matrix is the nunber
of colums from the diagonal to the furthernost term of the row.
There is no need when generating the deconposition to store or
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process any of the zeros of a symetrical stiffness matrix that
are beyond the hal f-bandwi dth. The maxi num bandwi dth is the

maxi mum of all of the row bandw dths; the maximum is inportant
because it is typically used to set the storage space for the
deconposition and the scope of the processing. Another common
measure of sparseness is the matrix wavefront (Ref. 3.14). The
wavefront at a rowis the nunber of active columms that follow
the diagonal element; a columm becones active at the row
containing the first entry for that colum, and it remains active
until that colum is absorbed into the diagonal at a |ower row.

Figure 3-10a shows the nodes and bars of a hypotheti cal
structure to illustrate wavefront and bandw dth counting. Figure
3-10b shows the nodal connectivit% matri x.  The wavefront and
hal f - bandwi dth are tabulated on the right. An advantage of the
wavefront nethod is that the wavefront can be less than, but
never nore than, the bandw dth. Another advantage for the
wavefront storage is that one more node added to an existing
structure nodel could be responsible for a devastating increase
i n bandwi dth, but would add at nost one connection to the
wavef ront.

Bandwi dt h or wavefront of the stiffness matrix are greatly
affected by the nunbering sequence of nodes and connections
chosen by the analyst. A judicious nunbering schene could
provide a major advantage In conputer storage and cal cul ations.

Al though the structural stiffness matrix is al nost never smal
enough to be stored in core, there are reasons to keep one of the
triangul ar deconpositions matrices entirely in core.  Storage
needed for the deconposition is proportional to the square of the
maximum criterion (bandw dth or wavefront). Simlarly, the
arithmetic to conpute the deconposition is also proportional to
the same criterion

In addition to bandw dth and wavefront, "frontal," and
"gkyline" are other stiffness matrix storage schenes that
capitalize on sparsity and are conveniently adaptable to the
solution of the 10ada deflection equations. Some of these storage
schemes are summarized in Ref. 3.15.

Structural analysis software progranms used in industry often
al low the user the options of enploying preprocessor codes to
autonmtically resequence the nodes to reduce storage and to
expedite the deconposition process. The prograns provide a new
nodal sequence in the formof a "was-is" [ist, which is
transparent to the user and does not affect the sequence in which
output results are presented. Mst of these prograns assune that
t he nunber of degrees of freedomfor each node are apBrOX|nater
the sane. This sinplifies the preprocessing program by allow ng
it to operate at the nodal |evel rather than at the degree-of-
freedomlevel. Several algorithns have been devel oped over the
years to inprove the sequencing of the connectivity matrix

24



(Refs. 3.16 thorough 3.18). Al though there is a continuing
search for the "optimum" resequencing al gorithm the existing
algorithns do a good enough job to make the analysis of large
structures tractable.

3.3.6 Cent inuum Fl enents

The wi de class of structures anal yzed by conputer can use
many types of finite elements in the analytical nodels.
Aval | abl e el ements include rods, beans, nenbrane, shear and
bendi ng plates of various shapes, curved plates, shell elenents,
toroids, ring elenents, three-dimensional solids such as brick
and tetrahedrons, etc. Neverthel ess, only a mnute subset of
these element types are inportant to antenna structure nodels.

The rod elenment, which has been discussed at |ength here,
redoninates in the antenna backup structure. The beam or bar
riefly considered in Section 3.2.5, is not frequently a primry

menber in antenna structures. Antenna performance requirenents
such as those that were considered in Chapter 2 make it necessary
to control surface deformations to very snmall magnitudes. This
Is done by enphasizing stiff structures, which are achieved by
deep trusses conposed of rods. The beans are nmuch shal |l ower than
the trusses that can be assenbl ed and consequently are nuch nore
conpliant. Al though sone rods will be connected to allow their
bending stiffness to participate, this stiffness is ordinarily
secondary because the rods are ver% shallow in contrast to the
depth of the truss that contains the rod.

Neverthel ess, there are plate-type elenments wthin
conponents of the antenna structure other than in the reflector
backup. Some of these conponents could occur in subreflector
supports, elevation axis wheels, and alidades or pedestals. _
These plates act primarily as nenbrane elements. That is, their
in-plane load carrying capability will overshadow the ability to
carry | oads apﬂlied normal to their planes. Furthermore,
al t hough they have sonme small| capability to resist in-plane
bendi ng about an axis normal to the plane of the plate, the
menbrane plates are not ordinarily connected to the renainder of
the structure at their exteriors to develop this capability. The
usual FEM nodel s of these plates, which are either triangular or
quadrilateral, represent only the three translation degrees of
freedom at their corner nodes. Their stiffness matrices, simlar
to the rods, nodel only the three nodal forces in ternms of the
nodal degrees of freedom

Rods and bars are two-node “lattice” (Ref. 3.13) elenents
that can be modelled accurately with finite nunbers of degrees of
freedom Lattice elements do not introduce discretization
errors; that is, adding nodes to subdivide them into additional
intervening elenents will not change their accuracy. For
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exanple, if the structure of Figure 3-4 were subdivided into many
nore than the two bar el ements shown, the conmputed deflection
under the load would be the same. On the other hand, plates are
continuum el ements that have infinite nunbers of degrees of
freedom and can be modelled only approximately by finite nunbers
of degrees of freedom

The plates that occur in antenna structures are triangul ar
and quadrilateral nmenbrane plates. The stiffness matrix for a
constant strain, three-node triangular plate can readily be
expressed in closed form However, the constant strain condition
I nposes a constant stress condition also. This makes the plate
overly rigid and therefore detrinmental to modelling accuracy.
Al t hough the closed formstiffness natrix is desirable for
conputer code generation and processing, it is best not to enploy
the triangular plate except en necessary as a transition
between the nodes of an irregular region. = The four node
quadril ateral nenbrane plate is a useful continuum el enent that
can nodel a linear stress distribution within its boundaries and

therefore is capable of a higher |evel of accuracy than the
three-node triangular plate.

The approach in treating continuumel enents with the
restriction that only a finite nunber of degrees of freedomare
available at their exteri”or nodes® is to postulate continuous
functions for interpolating the interior coordinates from the
nodal coordinates, and also the interior displacenments fromthe
exterior nodal displacenents. The “isoparametric" el enents use
t he sane interpolation functions for coordi nates and for
di spl acenents.  These el enments can represent irregular shapes and
curved boundaries when necessary.

Generation of the stiffness matrix for the isoparanetric
quadrilateral plate entails sone engi neering mechanics theory and
al so a substantial amunt of conputation. tails of the
procedure can be found in a nunber of references, including
Refs. 3.1, 3.2, 3.13, and 3.15. The procedure, follow ng the
exposition in Ref. 3.2, starts fromthe ‘Principle of stationary
energy” (sonetimes referred to as the “m ni num of the total
potential;" see Ref. 3.11).

Broadly, the principle states that.-the total potential for a
systemin equilibriumis stationary (actually a minimum) wWith,
respect to virtual changes in the” displacenments. |n an elastic
structure the total potential Pconsists of the net interna
strain energy %stored in the structure, and % the potential of
the loads. The net strain energy includes the strain energy that

*Unless special additional nodes are established along their
edges or interiors
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occurs because of the |oading and additional terns that can occur
if there are initial stresses and strains, such as from preload
and thermal effects. The potential of the |oads is the negative
(lost potential) of the work done by the external |oads, which

i nclude concentrated exterior forces, body forces, and surface
tractions. Omtting the effects of initial stresses and strains,
and body forces and surface tractions, % and ¥, are given by

U= T (fvorme %€'BE dv), m = number of el ements [3.39]
V=uPp [ 3. 40]

In the above, the strain energy is the sumof the strain
energies of all the elenments, e is the vector of elenent strains,
B is the material stiffness matrix (representing the stress-
strain laws) , and dv represents differential volunme. (As defined

previously, Uand P are the structure displacement and | oadi ng
matrices.)

The strain displacenent equations can be used to represent
the elenent strains in terns of the subset u_of the structure
di spl acenents associated with the element. This provides

e=Bu [3.41]

where the matrix B is a matrix of differential operators. Using
the above equation in Eq. [3.39], the strain energy can be
expressed as

U = %Y [u'B'EBu dv [3.42]

The el ement stiffness matrix k is defined fromthe above
equation by

k= [B'EB dv [3.43]

Therefore, the strain energy is expressed in terns of the el enent
stiffness matrix and nodal displacenents

A = %) u‘ku [3. 44]

The summation operator above can be renoved by recognizing
that U, the structure displacenents, is the union of all the
el enent displacenments u, and that K, the structure stiffness
matrix, is the union (and sunmation) of all the elenment stiffness
matrices k. As the result we have

P~% u'ku - u'p [ 3. 45]
and the stationarity condition 0P/0U=0 provides the faniliar
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equation
KU = P [ 3. 20a]

_ The elenent stiffness matrices are obtained from the
integrations in Eq. [3.43]. Quadrilateral plate elenents are
first projected onto a |local x, y coordinate systemin the plane
of the plate. After the stiffness matrix is developed in this
plane, 1t is transformed back into the original X Y, Z globa
coordinate system of the structure.

The quadrilateral plate is developed in the local x-y plane
by means of an auxiliary &mn non-orthogonal, non-dinensional

quadrilateral coordinate system The |local coordinates of a
point of the plate are expressed as

{x) =[N ol (x) [ 3. 46]
{y Lo N (¥} ‘

in which X and Y are 4x1 vectors of the local coordinates at the
four nodes and N = I N, N, N; NJ are shape functions.

The displacenents within the plate are expressed in terms of
the same shape functions as

Fu; = N o] {(uU) [3.4"1]
v [ o N (W)

and simlarly, U and V are the 4x1 vectors of the displacenments
at the corner nodes of the plate.

An exanpl e of suitable shape functions has the form
Ny = ¥(axx)@Aatm) i =1, 2, 3, 4 13.48)

in which the signs are established so that each N, has the val ue
of unity at one specific corner of the plate. This is possible
because the auxiliary coordinates are normalized so that € and n
have the values #1 at the corners.

The differential operator nmatrices Bin Eg. [3.41] are
aﬁplied to the shape functions (as they appear in Eqs. [3.47]) in
the & ,m coordinate system The Jacobian matrix J is established
to provide the transformation fromthe &, n coordinates to the
local x, y coordinates. The B matrix is then nultiﬁlied by the
inverse of the Jacobian matrix to convert it fromthe & n
coordinates to the local x, y coordinates. The integrations in
Eq. [3.43] are perforned in the & mn coordinates, and this is
accounted for nultipl¥ing the integrand by the determ nant of
the Jacobian |3l. The plate thickness is assigned the synbol t
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so that the integration, in place of Eg. [3.43], becones

x = [ BEB tlJl afan [3.49)

This integration is usually executed by fromtwo- to four-
poi nt two-di mensional Gaussian quadrature. ~The stiffness matrix
so obtained has order 8 because at each of four nodes it provides
t he correspondence of two force conmponents (P., Py) with two
disBIacenent conponents (u, v). After transformation_to the
global x, Y, z coordinates, it will be of order 12. The
auxiliary &€m coordinate systemis not needed for a rectangul ar
pl ate because operations in the x, y coordi nates are perforned
conveniently. n that case Eq. [3.43) can be applied directly.

3.4 ANTENNA BACKUP STRUCTURE COVPUTER MODEL

Ant enna backup structures, which provide the i mediate
supports for the reflector panels, are typically systens of
t hree-di mensi onal trusses. The trusses and associ ated bracing
are conposed of rod nmenbers such as those considered previously
in the Three-Bar Truss problem  The structural configuration
consists of a set of radial rib trusses interconnected by a set
of circunferential hoop trusses. A top view of a typical radia
ri b-hoop truss system was shown previously in Figure 1.-18. The
interior structure within the 360-degree aperture is an assenbly
of essentially repetitive nodul es.

Figure 3-11, reproduced from Ref. 3.19, shows the
construction of 15-degree repetitive nodule of a typical antenna
backup structure. Al nenbers of this nodule can be categorized
as one of ten distinct types. Four of these occur in the rib
truss (Figure 3-11d); they are the top rib chord, the bottom
chord, the post fromtop to bottom chord, and the diagonal from
the top of one ring to the bottom of an adjacent ring. The hoop
truss (Figure 3-11,b,c) provides three more types; top, botton,
and diagonal (the post is supplied by the rib truss). The
internediate rib (Figure 3-ha) is actually only a top rib chord
menber supported by the hoop truss, as shown in Figure 3-1lc.
The three renai ni ng menber types are a diagonal connected between
the top of one rib at one ring to the top of another rib at the
next ring, a simlar diagonal connecting nodes at the bottom of
ribs, and an inclined diagonal connecting a rib top to arib
bottom at adjacent rings.

The layout in Figure 3-11 was proposed in a design study for
64-meter-di ameter antennas. Al though there are thousands of
i ndividual rod menbers in the backup structure, the repetitive
character of the construction requires only 130 different rod
detailing variations. The regularity of construction and the
simlarities in the structural format of many antennas nake it
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feasible to design software preprocessor prograns to develop the
input data for structural analysis. A half-section analytical
nodel of this structure requires about 4000 data card records
(such as those described in Figure 3-8). These records can be
generated in a few seconds by a mainframe conputer. A general-
pur pose antenna structure data generator needs only a few

addi tional user parameters such as dianeter, nunbers of rings and
their radii, focal length, and possibly five to ten nore option-
defining paraneters.

The sinplicity of ring and rib backup structure arrangenent
makes it both feasible and logical to use a readily interpreted
nunbering code. Specific entries in the input records can be
identified with respect to location on the structure wthout the
need to consult a drawmng or other notes for the mathematical
model .  The schedul e bel ow shows a numbering code that wll cover
nmost backup structure situations.

BACKUP STRUcTURE NUMBERI NG SCHEDULE

NODE LABEL: 100*Ring +2*Rib For Bottom Ri b Nodes
100*Ri ng +2*Rib-1 For Top Ri b Nodes

RoD_LABEL: 10, 000*Ri b + 100*Ring + TYPE
TYPE

1 Rb Top
Ri b Bottom

2

3 R b D agonal

4 R b Post

5 Hoop Top

6 Hoop Bottom

7 Hoop Diagonal

8 Top Node Di agonal

9 Bottom Node Di agonal

10 Inclined Top to Bottom Diagonal
Bet ween Adj acent Rings

PROPERTY LABEL: 100*CLASS + DEL + SLAVE + TYPE

CLASS is an integer assigned to the ring

DEL is a multiple of 20 to permt up to 4 variations
wthin the ring annulus

SLAVE is 10 only at the Y-Z plane of symmetry
and zero otherw se
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Figure 3-12 shows plan view sketches for symetrical half
nodel s of antenna backup structures three different diameters.
The sketches show support points at particular bottom nodes of
the rib trusses. These supports are provided by the underlying
elevation wheel structure, po sib%y wi t h additional trapsition
structures between wheels 5h rib trusses. ESqne of the _
supporting construction variations can be seen in the first five
figures of Chapter 1.) Backup structure support nodels for
structural analysis tend to differ frominstallation to
installation and do not enphasize repeatability. Consequently,
the data input is prepared ad hoc w thout significant benefit of
automation aids.

_ Surface accuracy and mcrowave precision for these antennas
I mposes requirements on the number of supports for the backup
structure.  The 15m antenna shown is adequately supported at
three supports (at the corners of an equilateral triangle). The
inplied four supports (at the corners of a square) are considered
to be sufficient for the 26m antenna. Ei ght supports are
desirable for the 40m antenna, and these are assunmed to be
provided by a trussed ring girder. The ideal ring girder
provi des equal, or nearly equal, stiffness. at the reflector
attachnments, and it is a design challenge to achieve this. The
radii to the supports for the three antennas of the figure are
about 40% of the maxinumradii. An alternative concept for
backup structure support is a conpact central hub weldment. The
ﬁ%b trusses in this concept are essentially cantilevered fromthe
ub .

An innovative concept for equal stiffness backup structure
supports has been used successfuIIK for the 100m radio tel escope
near Bonn, Cermany (Ref. 3.20). This concept provides a series
of supporting bars that are arranged on the generators of a cone.
A simlar arrangenent is shown in Figure 3-13, which is taken
fromRef. 3.21 . There are 24 identical cone bars enployed. The
attachment points to the backup are indicated by the points
marked "s™ in the plan view of Figure 3-ha. Figure 3-13 shows
views that define the transition structure fromthe elevation
bearing to the backup structure and incorporate the c:one bars.
Unfortunately, this arrangement calls for structure below the
antenna along the focal axis, and this structure blocks the clear
passage through the vertex of the reflector that woul d be needed
for a beam-waveguide antenna (Figure 1-8).
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Input Data Matrices For MATLAB Finite El enent Program
ESSENTIAI, DATA
1 2 3 4 5
nodes =[nid X y z F(>e)r manent
restraint
- (Optional )
1 2 1
restr =[nid  conponent
(=1 or 2 or 3
or any conbi nati on)
) RS 3 4
rods =[eid pi d nid, nigq,
e o ® & o [ e 0 00 0O O O O O O e M e e 0O 0O ]
1 2 3 (5 6) (7
prop =[pid m d area { am)m am(ax) (ex))
xs e {option.for.des .))
1 3
mat er =[mid E2 dens
...................... ]
1 2 3
force =[fid nid factor  gx f?/ s
e e, )
analyze  =[fiq, fia,. . ... .. .. fidn]
OPTI ONAL DATA
forcel =[fid nlczi f agt or ! -5
ar.. . L0000 5 nid, =~ npig,
1 2 3 4 5 |
grav =[ fid fact or WX Wy W2
(01 vve| ght)
oooooooooooooooo u] ]
1 2
o o . e . e o o o o . o o 0 . 1
1
loadcomb =[sid chl e 3 ffi&l . (pa| rs)
(must be rectangul ar, f| II out vvlth zeros to ma‘ Cq’l Iargest  ow)
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nodes=[ 1 0 0 0 3
2 18 24 0 3
3 50 0 0 3];
restr=[ 2 12
3 2];
rods=[ 10 1 1 2
20 2 2 3
30 3 1 3];
prop=[ 1 10 2 1.2
2 10 3.2 1.2
3 10 4 1.2];
mater=[ 10 l.e+07 1);
force=[ 21 2 2.0e+04 1. 0 0
23 2 ~-4.0e+04 0 1 o] ;
analyze=[21 23];
Figure 3-9

Three Bar Truss Problem Input Data
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Data Preparation Notes For

TABLE 3-1
Finite El enent

Structure Analysis

Mat ri x Not es Equi val ent
NASTRAN
Mhenoni ¢
nodes c.é nid is an arbitrary |abel for the GRI D
node
c.2-4 contain the coordinates
c.5 any combination of the digits
1,2,or 3 to indicate a restraint in the
X, Y, or Z directions(see al so restr
bel ow)
restr c.1 points to a e.1 in nodes SPC, SPC1
c.2 simlar to ¢c.5 of nodes (sinilar)
rods c.1 eidis an arbitrary label CROD i
c.2 property identification, points to CBAR
a Rrop matrix identifier :
c.3-4nPhe nodes to which the bar is
connected,points t0 various c.1 of
nodes
prop c.1 matches a c.2 of bars o PROD
C.2 points to a mater matrix identifier |ppag
c.3 area of the rod
c.5-7 optional, not used in analysis,
but used subsequently in design
optim zation
mat er c.1 matches a c.2 of prop
c.2 nodulus of elasticCity MAT1
c.3 density, weight per unit volune
force c.1 arbitrary label for the force set FORCE
c.2 points to a nodes c.1 _
c.3 nultiplier to provide the magnitude
of the force, operates on c.4-6
c.4-6 X,Y, and conponents of the
force
inalyze C.1,2,3, etc. fid's Of '%’ see Case
forcel,grav, or loadcomb Set cases to Cont r ol

be anafyzea




forcel c.1 force set |abel FORCE1

C.2 points to a nodes c.1

c.3 magnitude of force

c.4-5 the force is apﬁlied from the

node of c.4 towards the node of c.5

(see c.1 of nodes)
gr av |ec.1loading set |abel GRAV

c.2 multiplier to provide the magnitude

c.3-4 conponent of weight to be applied

in the X,Y,or Z directions

This matrix wll generate a weight *

| oading matrix using the volunes of the

bars and the densities fromthe mater

mat ri x ]
conwt c.1l points to a nodes c.1 CONM2

c.2 magnitude of a lumped wei ght at the

node to be included with all grav

| oadi ng sets |
loadcomb | c.1 | oading set | abel LOAD

c.2 scale factor to be applied to a

| oadi ng combi nation

c.3 and followi ng odd colums are scale -

factors to be used in combining the set

identified in the immedi ate next colum

c.4 and follow ng even nunbered col ums

are set labels that correspond wth

analvze NAtri X cases _




CHAPTER 4
REFLECTOR SURFACE | DADI NGS

The mathematics of the surface pathlength error and the
error of the best-fitting parabolic surface were defined in
Chapter 2 in terns of the vector of surface deformations.

Chapter 3 explained how finite el enent structural analysis of an
anal ytical nodel of the structure is used to predict the surface
deformations in response to arbitrary |oading. This chapter

consi ders the modelling of environmental |oads that are applied
to the actual structure.

~ The gravity loading effect is of primary inportance because
it is always present during the antenna operations. Additionally,
the gravity loading is determnistic and can be predicted
accurately. The magnitude of this |oading, which consists of
the weight of the structure and additionally supported parasitic
conponents, is invariant during changes in antenna elevation
Nevert hel ess, the angle of the gravity |oading vector relative to
the antenna surface varies with the elevation. This change in
the relative direction is responsible for a different set of
gravity deformations at each elevation. However, it is possible
to reduce ,the,severity of the loading by aligning the surface
panel s accurately at sone el evation angle internedi ate between
the horizon and zenith pointing directions. The angle chosen for
panel sett|n9_|s called the "rigging" angle (Ref. 4.1). Once the
anels are aligned at the rigging angle the effective ?raV|ty
oading at a particular antenna angle consists only of the
change in | oading fromthe rigging angle.

QG her inportant environnmental |oads are fromw nd and
thermal phenonmena. These | oads are random and are nmuch harder to
characterize than the gravity |oading because their occurrence is
statistical. Furthernore, although wi nd and thermal |oading of
postul ated intensity m ght be considered to occur with sone
statistical regularity, the spatial distribution of the |oading
over the surface is not accurately predictable. Beyond this,
there could also be significant transient conponents.
Neverthel ess, despite sone uncertainties, wind tunnel test
experinments nmake It possible to propose nodels of the “static”
wind |oading; this is a hypothetical average steady-state
condition that has no tine dependency. The current know edge of
thermal |oading, unfortunately, is nore uncertain than that of
the wind loading. On the other hand, the transient components of
the thermal |oading may be less variable than for wi nd |oading.

Addi tional ‘significant |oads to which the antenna can be
subj ected are from snow, ice, and seismc shock. Antennas are
not expected to provide accurate m crowave surfaces when
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subjected to these environnments. Hence the effects of these

| oadings are ordinarily considered from the standpoint of
strength and safety rather than fromthe standpoint of surface
deformati ons. Snow and ice | oadings environnents are customarily
specified in terms of the layer thickness and weight density.
Consequently the magnitude and distribution of these loads can be
obtained by direct (although possibly, tedious) calculation.

Sei smc | oading, on the other hand, 1s stochastic and nuch nore
difficult to characterize. Seismc effects will be considered
later in the chapter on antenna dynam cs.

4.1 Gavity Loading
4.1.1 Pat hl ength Error At Any El evation

we are concerned Wth the conputation of the pathlength
error fromgravity loading at any antenna elevation in the range
0 <a < 90. To do this we capitalize on the linearity of the
structural response. The starting point is Eq. [2.35], which
provides the best-fitting hal f-pathlength error vector p. The
equation is repeated bel ow

P=AU+BH [2.35]

However , fron\Eq. [2.39] the fittin%]paranaters H can be
expressed as a linear function of the displacenent vector U It
follows then that the best-fitting pathlength error vector is
also a constant linear function of the displacement vector, i.e.

H=Cu [401a]

Xheredthe matrix C could be conmputed fromthe natrices B, W, and
, an

Pp=RU [(4.1b]
where R = A +B C.

The specific conposition of Ris shown in Ref. 4.1 (p. 74). It
can be constructed, if desired, frommatrices of geometry-
dependent ternms and weighting factors. It iIs inportant to note
that this is an invariant matrix and is i ndependent of the

di spl acements.  Equation [4.1b] al so shows that the pathlength
errors do not depend explicitly on the flttlng paraneters H, but
rather that His an explicit function of the displacenments that
are inplicitly represented within R Equation [4.1b] identifies
a linear relationship that makes it possible to sinplify all
pat hl ength error conputations fronlgrQV|t¥ and other loading
conbi nations. The method of conputation for gravity loading wll
be shown below. In a subsequent chapter it wll also be shown
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that the linear relationship between best-fitting pathlength
errors and the displacenent vector is pivotal to the procedure we
have chosen for optimzation of the structure design

It was just shown that the best-fitting pathlen%yh error p

is a linear function of the displacement matrix U. he

di spl acenents in turn, on the basis of either the Force nethod

(Eq. [3.14]2 or the Displacenent nethod (EgQ. [3.20!)thare | i near
e

functions of the external loading. It follows tha _

pathlength error vector is also a linear function of the |oading

as indicated below using the Force method for illustration:
p=RF P [4.2]

where Fis the flexibility matrix (adjusted if necessary to
?%cggﬁt for redundant effects according to Egs. [3.17] and

It should be noted, however, that in practice it is not
customary to formeither the matrix R or the matrix F or their
product. It is usually computationally nore efficient to use the
Brocedures described in Chapter 2 to conpute the Pathlength error

y forn1n% the associated A and B matrices by explicit summations
and also by including the weighting factors explicitly. The
di spl acements are al nost never generated from a flexibility
matrix, but rather are obtained froma finite el enent analysis
t hat uses the displacenment nmethod (Eq. [3.20]) fornulation.

- Figure 4-1a shows _an az-el antenna in the Y-Z plane at an
arbitrary elevation. The elevation angle o is defined as the
angle of the pointing (Z) axis above the horizon. The positive
directions of the Y and Z coordinate axes, which we always take
to be fixed to the antenna, are as shown in the figure.

The inset diagram shows that the vertical gravity |load w has
components of -w cos o and -w sin a parallel to the Y and Z
axes. At sone other reference elevation y the | oadi ng conmponents
are -wcos yand -wsiny. Figure 4-1b indicates the pathlength
error curve over the elevation range and how the curve is
influenced by a reference rigging angle y at which there is no

pathl ength error. Options for rigging angle selection will be
considered later in this chapter.

~The synbols P, and p, are introduced to represent the
| oading vectors of the total weight (structure plus parasitic)

'In contrast to the microwave engineering field, it is conmon
for astrononers to refer to the “zenith angle", which is the
conpl ement of the elevation angle.
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applied in the positive Y and Z axes directions, respectively.
At any elevationa the change in |loading ®, fromthe |oading at
the rigging elevation yis

P, [Py B] {n} [4.3]
{C}
in which
n= Ssiny -sin a [4. 44]
{=cos y -Cos a [4.4D)

Substituting Eq. [4.3] in Eq. [4.2] provides the change in
pat hl ength error p, fromthe pathlength error at the rigging
angl e as

Po = R F [Py P;] (m} (4.5]
(€}
In view of Eq. [4.1b], EqQ. [4.5) can be reinterpreted as
P - [Py P] (M} [4.6]
{2)

where py and p,are the pathlength errors in response to the
| oadi ngs Py and Pp,.

The change in nmean square pathlength error ss, at el evation
o, can be conputed according to Eg. [2.37) as

8s, = [n* ¢t 1 [ p,twp,/Tw, p,wp,/Yw,] {q} [4.7]
lpz‘Wpy/Ewi pztwpz/zwi] {C}

The mean sauare errors for the independent |oadings P,and P, can
berecognized in the above equation-and identified as Ss, and
ss,, respectively. The off-diagonal cross-product termis a
covariance and i's denoted as S,. Therefore Eq. [4.7) can be
rewitten as

sS,= [n* &1 [iss, Sy, | (M} [4.8]
l Sy, ss, | (¢}

~Equati on [4.8; provi des the mean square error fromthe
gravity loading effect. Odinarily, we assune that the
pat hl ength error at the rigging angle y is inconsequential in
conparison to the pathlength error effect fromthe change in
loading. If this is the case, then ss, is the nean square (half)
pathlength error at elevation a. A nmethod to include the effect




of the pathlength error at the rigging angle, if necessary, will
be discussed |ater

~Carrying out the nultiplications indicated in Eg. [4.8§]
provi des the nmean square pathlength error in the form bel ow

8s, = M® 88, + {’ss, + 2n{S,, [4.9]

This equation is of primary inportance because it permts
calculation of the pathlength error at any elevation in terns of
only two pathlength error analyses: the pathlength analyses for
the particul ar |oadings P, and P,.

It is nmore common practice in the antenna industry to refer
to the rms (root nean square “half”) pathlength error, which is
the square root of the nean square error that has been considered
so far in this chapter. The best-fitting procedures provide that
the nmean pathlength error will ordinarily be either zero or close
enough to zero to be ignored. If this is not the case, the
wei ght ed nean should be subtracted asdi scussed in Section 2.4.1.
Consequently, the root mean square and the standard deviation
wi || be numerically indistinguishable. Therefore, in the Ruze
equation for antenna gain reduction (Eq. [2.3] or [2.4]), the
standard devi ati on synbol owas used to represent the root nean
square. Here, we will assune that the notations "o" and "rms"
are interchangeabl e in the context of the best-fitting pathlength
error vector. Therefore, for the |oadings p, and e, the rns
terms are

Oy, = rmsy =SS;% [4.10a]
= rms; = 88;% [4.10Db]

Al'so, the correlation coefficient CRy, i s defined as
CRy; = Sy;/ (rmsy rms,) [4.11)

Therefore, in ternms of the rns pathlength errors for the | oadings
p, and P,, Eq. [4.9] can be witten as

rms, — (n2m8y2 + Czrmszz +21’IC CRy; rms,rms,) " [4 12]

The correl ation coefficient in the above expression is
usual ly so small that the third termon the right-hand side could
be insignificant . In fact, physical reasoning shows that this
correlation coefficient is expected to be exactly zero for an
antenna that is perfectly symmetrical in construction and weight
distribution about the X-Z and Y-Z planes.

The effective loading at any elevation is the net |oading
shown in Eq. [4.3]. Since displacenents are linear functions of
the loading, It follows that the fitting paraneters at any
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el evation H,canbe conputed as

H, = [H H  (m} [4.13]
)

where By and Hzare the fitting parameters conmputed for the
| oadi ngs P, and P,.

It is inportant to note that these two |oadings in
t hemsel ves have no real physical significance. Rather, they are
mat hemati cal | oadings convenient to the foregoing devel opment.
They are aligned along positive coordinate axes In accordance
with a consistent algebraic sign convention. The inset in Figure
4-1a shows that any real external gravity loading is a negative
conbi nation of conponents of these loads.” Furthernore, although
it is not difficult to visualize the antenna deformation patterns
that could result fromthe |oadings applied in either the Y or Z
directions, it is nore difficult to visualize the deformation
pattern caused by the change in Ioad|n?_(as iven in Eq. [4.3]),
and it is even nore difficult to visualize the net pathlength
error vectors after the best-fitting operations (Eq. [235).
Attenpts to visualize these patterns w thout taking into account
the subtractions with respect to the rigging angle and the
effects of the best fitting have occasionally led to confusion

4.1.2 Ri gging Angle Selection

TW criteria possible for choosing rigging angle are: (a)
minimize the maxi num rnms pathlength error over the el evation
range of interest, and (b) mnimze the expected average rns
pathlength error over the elevation range.

Citerion a;

From Figure 4-1b it can be seen that an intuitive wayto
m ni mze the nmaxi num pathlength error is to nake the errors at
the extrene el evation ranges equal to each other. Then the
errors at the extrene el evations becone the maxi num and these
maxi ma are snallest when they are equal. 1twas shown in Ref.
4.1 that for the extrenme elevations of O and 90 degrees the
equalizing rigging angle is

Y = ¢t [4.14]
wher e
¢ = tan? (B/A) [ 40154]
o= Cs' (C (A +B)* ) [4.15b]
and
A = 28S, -2Sy, [4. 16a]
B = 2ss,-28, (4.16b]




C = Ssy -ss, [(4.16C])

The foregoing procedure will not necessarily mnimze the
maxi mum pathlength error. A slightly |ower maxi mum error can be
achi eved by biasing the error at the rigging angle so that there
Is a non-zero pathlength error at this elevation. However, in
cal cul ations for practical antenna designs the reduction in the
maxi mum error was insignificant. There also was the di sadvantage
of a finite error in the vicinity of the rigging angle.

Consequently, the approach above is recommended as the sinplest
and nost practical.

Criterion b:

W assune that a set of weighting factors H, represent the
probability of the antenna operating at each elevation. Then the
rigging angle can be chosen to mnimzing the H, wei ghted
average pathlength error over the elevation range. It can be
shown (Ref. 4.2? that the objective to be mnimzed is

OBJ= a?sSy + b’sSs;+ 2C Sy, [4.17]
in which

a8 = cos’y+ Y H, cos?ld 2ws y ) HL COS a [4.183]

b’ = ein’y+ ¥ H, sin’a-2Sin yY} H, sin a [4.18b)

C= sinycosy + L H, sin a cos o -cos yX H, sin a

-sin vy Y H, cos a [4.18c)

and H, is normalized so that } H, = 1.

The expressions for a, b, and c are devel oped from Egs.
[4.4], [4.9], and [4.17].

For the antenna observations equally distributed over the
hem sphere fromthe horizon to the zenith the weighting is the
cosine of the elevation angle. Consequently, the rigging angle
could be chosen to mnimze the cosine weighted average
pathl ength error. CObservation targets equally distributed over
t he hem sphere represent a restricted special case, so that the
cosine weighted average error is not generally useful..

On the other hand, when antennas are used for specific
classes of m ssions, such as for spacecraft comunications, it is
possible to derive statistics for typical mssions and devel op
wei ghting factors for the associated elevation angle range. One
study of a set of about 15 planetary spacecraft m ssions during
an 8-year period was described in Ref. 4.2. A set of average
declination angles fromthe spacecraft m ssions was assenbl ed and
a set of declination angle weighting factors was_conputed on the
basis of the time spent at these declinations. The declination
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angl e weighting factors were used to conpute elevation angle
wel ghting functions (probability densities) by means of the

HA-dec t 0 az-el conversion equations described in Chapter 1,

section 1.4.1.

It was al so suggested that these spacecraft m ssions
traveled in orbits simlar to an ecliptic orbit. A set of
el evation angle statistics was devel oped for a sun-tracking orbit
to test this suggestion. As suspected, it was found that the
el evation angle probability statistics of both txpes of m ssions
were simlar. Consequently, the sinplicity of the analysis for
the solar mssion made this aconvenient way to estimate the
wei ghting factors. The solar m ssion weighting factors are shown
in Table 4-1. Figure 4-2 shows the probability density function
of elevation angles for solar nissions as determned fromthe
wei ghting factors, and Figure 4-3 shows the cunul ative
probability distribution functions. The latitude of the ground
antenna for these fi?ures was 35.4 degrees. Figure 4-2 shows
that the elevation of about 32 degrees predom nates and Fi gure

4-3 shows that the antenna elevation is less than this about 50%
of the tine.

The weighting factors are substituted into Egs. [4.18] to
formthe objective of Eq. [4.17]. Then y can be chosen by a
nunerical search method to nininize the objective such as by the
met hod of false position, binary search, golden section search
or trial and error search. As a specific exanple, analysis for
the Deep Space Network 64-m Mars antenna at Col dstone, California
via the golden section nethod provided an opt|nun1r|gg|n? angl e
of about 35 degrees. Figure 4-4 shows the elevation angle range
performance for the Marsantenna at 8.45-GHz frequency for the
optinum and the 45-degree rigging angles. The weighted average

ain reduction (Eq. [2.4]) over the elevation range is inproved
y about 20% with optimum rigging. Specifically, the optinmum
rigging angle inproves the performance at |ow el evations and
degrades the performance at the higher elevations, which is
consistent with the probability functions of Figures 4-2 and 4-3.

4.2 Wnd Loading

The surface wind | oading on each region of a structure is
equal to the product of the surface pressure, the area of
surface exposed to the pressure, and one or nore coefficients
t hat depend upon both air flow characteristics of the surface and
directional coefficients of forces acting on the surface. The
pressure is usually taken to be the stagnation pressure, which is
t he Pressure devel oped when the wi nd speed is reduced to zero.
The flow characteristic coefficients, although theoretically
comput abl e from conplex fluid mechanics relationships (Ref. 4.3)
are nore practically obtainable by wind tunnel nodel tests
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(Ref. 4.4).

There is wdely available literature (Refs. 4.5, 4.6) that
consi ders practical aspects of the static wnd |oading,
gredoninantly upon on building, rather than antenna, structures.

he enphasis is usually on overall |oading coefficients for the
entire configuration. ~For exanple the drag force on a structure
I's conputed as the product of a drag coefficient, the stagnation
pressure, and the frontal area of the entire surface exposed to
the wind. Lift forces, side forces, and nonents are computed for
the entire structure simlarly fromlift force, side force, and
monent coefficients. These coefficients are useful in
determning the loading at particular story levels or at the
foundations of Civil Engineering structures, for exanple. They
are also useful in obtaining the forces and nonents at the axes
of antennas for the design of drive train notors, bearings, and
gears.

Nevert hel ess, the analysis of the mcrowave accuracy of the
antenna surface depends upon the spatial distribution of surface
Wi nd pressure coefPicients. Pressure coefficients vary
significantly over the surface. They usually are applied to
smal | individual areas (typically the size of each reflecting
surface panel). Products of tributary surface areas, wnd
pressures, and pressure coefficients provide the nmeans to conpute
the forces at nodes of the finite element nodel. These forces
are the inputs for the processes of deformation analysis,
pathlength error conputations, and |east-squares best-fitting as

described in Chapters 2 and 3. In a sense, surface pressure
coefficients can be viewed as mcro-scale phenonena, while the
overall drag, lift, side force, and moment coefficients can be

viewed as nmacro-scal e phenomena. Of course, the macro-scale
coefficients could ideally be obtained through integrations that
enpl oy the mcro-scale conponents.

4.2.1 Stagnation Pressure Relationships

The Bernoul I'i nodel for the stagnation wind pressure g on an
exposed surface is

inwhich pis the air mass density and v is the wind speed. This
stagnation pressure is the differential pressure above the
anbient. |t balances the kinetic energy lost by arresting the
motion of a unit volune of the air fluid.

| n conventional English units and under standard atnospheric

conditions of 60°F and of 14.7 1bs/inch? (psi) atnospheric
pressure, the air density is 0.002378 slug/ft’. Equation [4.19]
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applies with v expressed in feet/s. In practice, it is

conventional to express the speed in mles/hour (nph) as V.
Therefore

v(ft/s) = (5280/3600)V (nph) [ 4. 20]
Then

q =.00256 V' [4.21]
and here g is in lbs/ft? (psf).

The follow ng factors can be used to convert to SI units:
4.448 newtons (n
0.3048 neters
14.593 kil ograns (kg)

Then the air density ps; in kg/m® i s

1 Ib force (1bf) -
1foot (ft)
1 slug

o

ps; = 0.002378 X 14.593/(0.3048)°= 1.2255 xg/m®

and Ea. [4.191will aive the pressure in newtons/m’> wWith this
val ue of the air density and with the speed in meters/second.

~ The air density can vary significantly with the site
altitude. For exanple, a specific conputation in Ref. 4.7 shows
the density at elevation 3500 feet (1070 m) is only 8 7% of the
density at sea level. The procedure in this reference can be
extended to provide a generalized, rational algorithmto estinate
the variation of air density with altitude. To nmake the
estimate, we have the equation of state for a perfect gas which
inplies a constant relationship between pressure, volume, and
temperature. The relationship is

PV/T=R = const ant [4.22]

P is the atnmospheric pressure, Vis the specific volume (volune
of a unit of mass) , and T is the absolute tenperature (degrees
rankine in English units, degrees kelvin in S1 units). Letting
P, v,, and TO reﬁresent the reference pressure, volume, and

tenperature at the standard conditions, the volunme at some other
condi tion can be found from

(PQ'P) (T/To) v, [4.23]

\'

The wei ght density yis inversely proportional to the specific
vol une so that Eq. [4.23] can be converted to

y = (PIPO (TAT) % [4.24]
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where y, for air at standard conditions is 0.002378 * 32.17 =

0.0765 1bs/ft®. A tenperature-elevation gradient (Ref. 4.7) can
be estimated as

T = 7.-pz [4.25]

in which B is equal to 0.0035°F per foot of height (above sea
level) and Z is the height in feet. A rational estimate for the
atmospheric pressure at height Z is to assume that the change in

pressure depends approxi mately upon the weight of the col um of
air from height z=0 to height "Z. This change in wei ght can be

conputed as the product of the avera%e of the density at sea
| evel and the density at the height Z and the height itself.
Then the pressure PO ’in 1bs/in’ at” height Z can be estinated as

P =P, =2 (y+7,)/2/144 [4.26]

Substituting Eqs. [4.25) and [4.26] in Eq. [4.24] provides
t he ratio of the air density at height Z to the density at sea
| evel in the form

vy, = ND [4.27]
where N=1 - vy,2/ (288P,)
and
D = 1-Bz2/T, + Y,2/ (288P,) [4.27b)

Figure 4-5 shows a plot of Eqg. F4.2§% for elevations up to
25, 000 ?7,620-n) feet above sea |evel. e points narked b
asterisks are fromthe Dept. of Commerce U S. Standard Atnosphere
as reported in Ref. 4.8. The agreenent of the curve with the
Standard At nosphere is close enough to suggest that simlar

met hods of conputation may have been used.

4.2.2 Surface Pressure Coefficients

Reference 4.9 is one of only a few substantive reports on
the wind tunnel determnation of antenna surface pressure
coefficients. This report provides the data from pressure
transducers that were apPIied at 22 locations distributed *over
the surface of thin half-neter-dianeter paraboloidal shells. The
focal length-to-diameter ratio of the shells was 0.33. Severa
shells of different porosities were tested. Here, we wll
consider only the shell with solid surface. The porous shells
had specific porosity and hole size factors that restrict
generalization to other porosity configurations.
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Five sets of data from the reference are provided in Figure
4-6. These sinmulate antennas with solid surfaces at elevations
of O 60, 90, 120, and 180 degrees. The first three cases
represent wind into the front of the antenna. The second two are
equi valent to the elevations of 60 and zero degrees with the w nd
fromthe back. No side winds are considered, although symretry
at the 90-degree elevation would allow this case to apply to
every wind azimuth. The radii are normalized to a unit dianeter
The col um headi ng angl es are measured fromthe top (Y axis) of
the antenna. These angles cover only the half of the antenna to
one side of the Y-Z plane. Symmetry can be used to derive the
other half because the wind is always either directly fromthe
front or the back.

Cont our maps determ ned fromthe data are shown in Figure
4-7. The appearance of synmetry about the vertical axis is
really an artifice of the procedure invoked to produce the
contours. That is, contours for the full antenna were devel oped
by reflecting one side of the antenna about the Y-Z plane. A
40-by-40 X-Y grid was established as a basis for bilinear °
interpolation fromthe original w nd tunnel measurenment data.
VWien eval uating the appearance of these contours (or in fact, any
other data derived fromthe wind tunnel data) , it should be
recogni zed that there were only 22 measurenments points in each
wi nd ‘tunnel configuration. Furthernore, fine details of contour
maps depend upon the interpolation algorithns enployed.

4,2.3 Wnd Force Data For Conputer Analysis

_ The data in Figure 4-6 has been used as the basis of
interpolation to provide wind force loading data for the finite
el ement anal ysis of antenna structure nodel's. Appendi x 4A
contains a MATLAB grogran1 WINDTUNL.M, that will provide a file
of force-loading F card image records %Table 3-1) that can be
input to the NASTRAN program (Ref. 3.7). he user is required to
supply basic antenna parameters of dianeter and focal |ength

The particular antenna surface is described in an 8-column i nput
matrix. The rows contains the node |abels, a coordinate system
flag, the X Y, and Z coordinates of the node, and a weighting
fagtor that represents the relative surface area tributary to the
node.

The coordi nate system flag provides the option of
representing the antenna in a cylindrical coordinate system as an
alternative to providing the X and Y coordinates in the standard
antenna coordi nate system (defined previouslr in Chapters 1 and
2). A pre-defined cylindrical systemis enployed in which angles
are neasured clockwi se fromthe Cartesian Y axis, the X
coordinate in the input matrix is replaced by the radius, and the
Y coordinate is replaced by the angle (in degrees). The input Z
coordinates are not used, but instead are reconputed by the

12




?rogran1frqn1the parabolic equation so that the Z coordinate at
he vertex is zero.

The program pronpts the user for input and_contains default
val ues as well as conments for clarification. The output, in
addition to a file of FORCE cards, includes the sum of the forces
inthe X, Y, and Z coordinate directions and the nonent about the
X axis at the vertex.

The algorithms consist of interpolating the pressure
coefficients to the nodes of the structure, computing the wnd
pressure fromthe speed (Eq. [4.19]) to obtain the force per unit
area, and then determning the area tributary to the nodes by
nmeans of the weighting factor and the diameter. The surface
force magnitude at the node is then the product of the tributar
area, the pressure coefficient, and the stagnation pressure. The
direction cosines at the surface are devel oped (EQS-!2.19]) to
provide the orientation of the force vector. The total surface
and projected areas are byproducts available from these
conput ati ons.

4.2.4 Wnd Speed Profile

A wel | -known characteristic of wwind is the variation of the
sgeed with the height above the ground. This variation is called
the velocity profile. Speeds are |owest near the %round and
increase with hei%ht within the boundary layer. The boundary
| ayer is several hundreds of meters above the surface, so that
%round-based antennas will normally be within the boundary [|ayer

he speed becones constant abovethis height.

The speed-height relationship conventionally adopted in
civil engineering practice provides a power law function to
exPress the speed VA at height Z,in terms of the speed v, at a
reference height 2z, as foll ows:

Vo/Vo = (2/JZ%) [ 4. 28)

The power |aw exponent a is usually taken as 1/7 for open
terrain, 1/10 over water, 1/4.5 in suburban areas, and 1/3 in
cities. The value of 1/7 is likely to predom nate for ground
antenna sites. The boundary |ayer height in which Eq. [4.28] can
be used is 275 mfor a = 1/7 and 210m for a = 1/10. The
boundary |ayer is higher for the other two categories. The
reference height is often taken as 10 mor 33 feet.

The logarithmc |law (Refs. 4.3, 4.5, 4,6) provides another
expression for the wind speed profile. It invokes three
paranmeters to describe the speed variation and is devel oped from
m cro-nmeteorol ogical theory. Nevertheless, both the power |aw
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and logarithmc law provide simlar--actually al nmost _

i ndi stinguishable--profiles at the usual antenna heights. Since
neither law provides an exact representation for every physica
situation, the power law is preferred because, in the absence of
site data, the single paraneter o can be estimated according to
the rules of the preceding paragraph.

Reference 4.7 tabul ates several nmonths of wi nd speed data
for three different heights recorded at hourly intervals at
CGol dstone, California in 1966-67. An instrunented tower had
anenoneters at the 50-, 150-, and 300-foot levels. Triplets of
data for the three levels were averaged for 5-mnute periods
taken on the hour. The data triplets were closely indicative of
the speeds at simultaneous times for the three heights. Ten
nont hs of data were available to provide conparisons for the
three heights and the data was pooled into nonthly averages; thus
10 nmonths of average speed data and three heights 8rOVIde thirty
mont hly averages. There were a total of about 4000 hourly
sanples for each height. The value of a found by regression was
0.1405 and the standard deviation was 0.0193. Figure 4-8 shows a
plot of the ratios of the individual nmonthly average speeds at
the 150- and 300-foot heights to the speeds at the 50-ftoot
height. The speed ratios are plotted on a sem-log scale. The
power law line is plotted using the regression value of a. The
evident scatter of the data with respect to the regression |ine
makes Lhﬁ choi ce of power law or logarithmc |aw seemto be
i mmat eri al .

4.2.5 Extension of Wnd Tunnel Data to Oher Wnd Attitudes

[f the wind tunnel tests that Produced the data of Figures
4-6 and 4-7 were free of tunnel wall and boundary effects, the
data woul d have been honogeneous and coul d have been extrapol ated
to provide data for variations in wnd azinmuth (yaw) in addition
to antenna elevation. In that case the wind tunnel data would
apply to the compound azi nmut h-el evation wind angle wth respect
to the antenna axis. To be specific, if we now let o represent
t he antenna el evation angle, and A represent the w nd azinmuth

relative to the antenna, the antenna Z axis can be represented by
t he vector 2, as

Z, = [0 =-cos a sin &) [4.29a]
The wi nd vector Winpinging on the antenna can be represented by
w= [-sin A cos A 0] [4.29b]

The cosine of the conpound angle ¢ between the wi nd and the
antenna is the inner product of %, and W

14



d=cos? (cos o cos A [ 4. 30]

Figure 4-9 shows contour lines of the magnitude of the
conpound angles that occur for various conbinations of antenna
el evation and wind azinuth. Depending upon the_validit% of two
assunptions, contours such as these would make it possible to
determ ne wind pressures for the full spectrum of elevation and
wi nd azimuth angles. The assunptions are

(1) The wall and boundary effects of the wind tunnel did
not interfere significantly with honmogeneous air flow.

(1t is reasonable to interpolate the wind tunnel
pressure data for elevations internmediate to those at
which the wind tunnel neasurements were taken

Nei t her of these assunptions can be strictly justified. The
first assunption can be seen to be inaccurate in view of Figure
4-7a. Here, it is evident that the pressure lines are not
symmetrical about a horizontal diameter. In fact, it has been
suggested that the particular wind tunnel setup may have enployed
unsymetrical screens to produce a velocity profile as in EqQ.
[4.28] with a = 0.14. The second assunption has yet to be
tested. W once attenpted the drastic interpolation between the
O degree and 90-degree elevation data to see if there was
agreement with the measured 60-degree data. The results of the
interpolation were not encouraging. Nevertheless, if itis
essential to have wind pressure distribution data in addition to
the five cases of Figure 4-7, the analyst may have no other
choice than to interpolate for the needed data and to accept the
consequences of the weaknesses of the above two assunptions.

4.2.6 Integration of Pressure Coefficients

The wind forces determned by summng the finite el enent
nodal |oading generated (as described, for exanple, in Section
4.2.3) can be conpared wth wind tunnel force-balance data from a
nunber of independent wind tunnel antenna nodel tests. The
force-bal ance data usually provides the six generalized forces
(the three forces and the three noments with respect to the three
or t hogonal axes% for the conplete structure nodel that is being
tested. Force-balance data Is nore easily obtained than the
pressure distribution data and hence there is much nore data
available, and it is usually nuch nore detailed with respect to
the antenna elevation-wind azinuth spectrum The data is used to
desi gn the nechani cal system of pinions, gears, and drive notors,
and to establish the |oadings on the antenna pedestals, nounts,
and foundations. Depending on the coordinate system in which the
data is collected, the data can be used to derive the
conventional |ift, drag, and side force coefficients and the
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pitch, roll, and yaw nonents

Ref erence 4.10 provi des tables of force-bal ance data
assenbl ed as the conpilation of a number of wi nd tunnel testing
progranms. There are four sets of data that cover several surface
porosity and focal length-to-dianeter ratios. The antenna
el evation and wind azimuths are tabulated from O to 180 degrees
at 5-degree increnents. A condensed set of data for the solid
surface with a focal length-to-diameter ratio of 0.313 is
reproduced in Appendix 4B. The coordinate systemfor this set of
data is shown in Figure 4-10. The antenna forces are conputed as
the product of the tabulated force coefficients, the aperture
area, and dynamc pressure. The nonments are conputed as the
product of the noment coefficients with the aperture area and
diameter and dynamic pressure. That is:

force = c,AQ
mment = ¢, ADQ(Q

where ¢, and ¢, are the tabulated force or the nonent
coefficients, Ais the reflector area, Dis the dianeter, and q
is the stagnation pressure.

Ref erence 4. 11 provi des an additional conpilation of wind
tunnel force-balance data from a nunber of sources. This
reference shows agreement in some cases and scatter in others
when data from differing sources are plotted for conparison

Fi?ure 4-11 shows a plan view of the right-half top surface
nodes of a hypothetical 30-foot-diameter anténna. The normal,
axial, and pitching nmoments were conputed from the coefficients
in Appendix 4B and the conputations outlined in Table 4-2. Wnd
force | oading data was also generated for this antenna by the
procedure and program described in Section 4.2.3, and the normal,
axial, and pitching noments obtained by summ ng the data of the
FORCE | oading records are also recorded in the table for
conparison. Table 4-3 shows the same type of information for a
132-foot-dianeter (40-nm) antenna.

Tabl es 4-2 and 4-3 show that agreenment of the forces from
the two conputational approaches is best when the force
magni tudes are the largest. \Wen the magnitudes are snall, the
forces do not even always agree in sign. The pitch noment
agreement is also irregular, and there is also disagreenent in
some of these signs. \Wen proceedi ng bel ow the vertex of the
ant enna downwar ds towards the foundation, the disagreenment in
nmonents is Iike]y to become smaller because the effect of the
vertex forces will predomnate at these distances. Disagreenents
of the integration nethod with the force-balance nmethod I's not
surprising n view of the independent wind tunnel tests, possible
difrerences in wall and boundary |ayer effect differences, speed-
hei ght profiles, differences in the focal |ength-to-dianeter
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ratios of the nodels, and the limtations of interpolating over
the surface fromonly 22 pressure tap locations.

4.3 Thermal Loadi ng

The distribution of tenperature over the structural menbers
of the antenna causes thermal distortions of the nembers and
changes the shape of the surface. If the tenperatures at the
nodes of the nodel or the average tenperatures of menbers of the
model are known, finite elenent conputer nodels can predict the
deformations, and hence the surface errors. Unfortunately, there
are alnost no successful neasurement data available to establish
the actual tenperature distributions for an antenna structure.

In the absence of substantive data, it has been the practice to
performa few rudinmentary estinmates of tenperatures and
extrapolate these into arbitrary distributions for conputer
analysis. As an alternative, an accurate and practical o
anal ytical procedure that would incorporate thermal conductivity,
convection, radiation, and re-radiation appears to be out of the
reach of current technol ogy because of overwhel mng conplexity,
uncertainty in physical paranmeters, and requirenments for conputer
resour ces.

A few infrared camera neasurenments (Ref. 4.122_nade in the
1980s provide an exception to the |lack of actual field data. A
34-m antenna was nmonitored in the field by an imaging infrared
canera during a tracking mssion. A spacecraft was tracked in
a sidereal orbit so that a sun angle of about 25 degrees with the
antenna axis was approximately constant during the experinment.

Col ors recorded by the canmera were processed to provide a close
estimate of the actual tenperatures of the structure. Figure 4-
12 is a black and white reproduction of the col or photograph
camera record. Celsius tenperatures obtained through processing
the camera record are printed in white ink. The darker regions
near the rimof the dish are attributed to the cold tenperature
of the sky that appeared because the outer surface panels were
perforated. The relatively small range of tenperatures that were
recorded are attributed to high-reflectance white paint that
controls teEPeratures of antenna metals exposed to direct
sunlight. Unfortunately, the resources were not available to
continue this measurement program

| nfrared canmera nmeasurenments could be automated to provide
spectra of distributions of actual antenna tenperatures for
various environmental conditions. These distributions could be
used for finite element analysis of surface accuracy. Field
canera neasurenents are nore authentic than wind tunnel. _
experiments because neasurenents are obtained for the full-sized
prototype under service conditions, rather than for scale nodels
under sinulated conditions. It is also feasible to nmeasure
tenperatures at many nore points than are practical for w nd
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FI GURE 4-6
ANTENNA SURFACE PRESSURE CCEFFI Cl ENTS
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ELEVATION = O
DEGREES FROM TOP

15 45 75 105 135 165
RADI US
.50 1.00 1.05 1.05 1.05 1.05 1.30
.45 1.39 1.42 1.42 1045 1.50 1059
.40 1.48 1.49 1.52 1.51 1.62 1. 65
.35 1.51 1.51 1.55 1.59 1.64 1. 66
. 30 1.53 1.53 1.56 1.60 1.64 1. 66
.25 1.53 1.53 1.57 1.60 1.64 1.65
.20 1.54 1.55 1.58 1.61 1.64 1.64
.15 1.55 ,1.57 1.58 1.61 1.63 1.63
.10 1.56 1.58 1.59 1.61 1.62 1.62
.05 1.58 1.59 1.60 1.61 1.61 1.61
ELEVATION = 60
DEGREES FROM TOP
15 45 75 105 135 165
RADI US
.50 0. 68 0. 80 2.60 4.30 3.15 2.50
.45 1.00 1.09 2. 30 3.30 1.80 1.42
.40 1.19 1.27 1.95 2.36 1.43 1.19
.35 1.29 1.36 1.75 1.80 1.39 1.17
.30 1.38 1.43 1.66 1.60 1.37 1.14
.25 1.47 1.47 1.63 1.53 1.39 1.11
.20 1.53 1.50 1.62 1.51 1.41 1.09
.15 1.56 1.52 1.58 1.51 1. 45 1.12
10 1.57 1.53 1.58 1.50 1.47 1.24
105 1.56 1.53 1.55 1.52 1.50 1.41
ELEVATION = 90 (STOW
DEGREES FROM TOP
15 45 75 105 135 165
RADI US
.50 0.30 -0.03 0.01 -0.23 -0.63 -1.20
.45 0.57 0.29 0.02 -0.10 -0.53 -0.90
.40 0.50 0.30 0. 04 -0.08 -0.45 -0.75
.35 0. 47 0.20 0. 05 -0.06 -0.37 -0.64
.30 0. 26 0.09 0. 07 -0.06 -0.30 -0.54
.25 0.17 0. 05 0.08 -0.05 -0.22 -0.53
.20 0.12 0.03 0. 06 -0.03 -0.15 -0.32
15 0.09 0.02 0.05 -0.02 -0.09 -0. 20
10 0. 07 0002 0.04 -0.01 -0.04 -0.12
.05 0.04 0.02 0.03 0.00 -0.01 -0.05

ELEVATION = 120
DEGREES FROM TOP




15 45 75 105 135
RADI US
.50 -1.24 -0.72 -0.22 -0.05 -0
.45 ~1.28 -0.86 -0.27 0.02 0.
.40 -1.25 -0.89 -0.31 0.07 0.
. 35 -1.18 -0.84 -0.30 0.10 0.
.30 -1.10 -0.76 -0.28 0.12 0.
.25 -1.03 -0.66 -0.23 0.12 0.
.20 -0.93 -0.54 -0.18 0.11 0.
.15 -0.78 -0.40 -0.13 0.09 0.
.10 -0.55 -0.24 -0.08 0.07 0.
.05 -0.22 -0.10 -0.03 0.04 0.

ELEVATION = 180
DEGREES FROM TOP

15 45 75 105 135
RADI US

.50 -0. 45 -0.37 -0.47 -0.49 -0.51
.45 -0.68 -0.65 -0.70 -0.73 -0.87
.40 -0.85 -0.85 -0.90 -0.90 -1*C8
.35 -1.00 -1.02 -1.04 -1.06 -1.11
.30 -1.13 -1.16 -1.16 -1.18 -1.18
.25 -1.24 -1.24 -1.24 -1.27 -1.24
.20 -1.34 -1.32 -1.32 -1.35 -1.30
15 -1.39 -1.36 -1.36 -1.39 -1.34
10 -1.41 -1.39 -1.39 -1.41 -1.38
.05 -1.42 -1.41 -1.41 -1.42 -1.41
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Antenna Wind Pressure Contours
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TABLES

4-1 Elevation Wighting Factors for Solar M ssions, Antenna
Latitude = 35.4 degrees

4-2 Total Wnd Loading Conparisons, 30-ft-diameter Half Antenna
4-3 Total Wnd Loading Conparisons; 132-ft-diameter Half Antenna
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TABLE 4-1
ELEVATI ON VEI GHTI NG FACTORS FOR SOLAR M SSI ONS

Cooooooooo

(o]

ANTENNA LATI TUDE = 35.4 DEGREES
H Elev H Elev H Elev . H
. 00000 2.5 . 00000 5.0 . 00402 7.5 . 04034
. 04065 12.5 . 04106 15.0 . 04162 17.5 . 04237
. 04338 22,5 . 04478 25.0 . 04686 27.5 . 05038
. 05983 32.5 . 06156 35.0 . 04657 37.5 . 04289
. 03850 42.5 . 03660 45.0 . 03353 47.5 . 03217
. 02966 52.5 . 02855 55.0 . 02633 57.5 . 02534
. 02327 62.5 . 02235 65.0 . 02033 67.5 . 01944
.01738 72,5 . 01653 75.0 , 01431 77.5 . 00942
. 00000 82.5 . 00000 85,0 . 00000 87.5 . 00000
. 00000 92.5 . 00000 95.0 . 00000 97.5 . 00000



TABLE 4-2

TOTAL WND LQOADI NG COVPARI SONS
30 FOOT DI AMETER HALF ANTENNA

A=353 D=30
El evation 0 60 90 120 180
Speed 60 60 100 60 60
q 9. 208 9. 208 25. 58 9. 208 9. 208
Crormal -0.032 -0.078 0. 153 0.216 | -0.030
Chrial 1.521 1.832 0.0 -0.600 [ -0.961
Cricen 0.038 -0. 049 0.104 0.124 0.022
Crormas A -104 - 254 1383 703 -98
Sum of -50 -217 905 - 397 72
Nor nmal
FORCES
Cuias A Q 4950 5962 0 -1953 -3127
Sum of 4842 5377 -913 -921 - 3351
Axi al
For ces
Ceiten A D 3170 -4783 28, 206 12, 2148

106

Sum of -1435 -6532 26,022 | -11, 230 2107
Pitch
Monent s




TABLE 4-3
TOTAL WND LOADI NG COVPARI SONS
132 FOOT DI AMETER HALF ANTENNA

A=6842 D=132
El evati on 0 60 fQ 60| 120 180
L_Speed 60 60 100 60 60
q 9.208 9.208 25.58 9.208 9.208
C normal -0.032 -0.078 0. 153 0.216 -0. 030
Caxial 1.521 1.832 0.0 -0. 600 -0. 961
Cpiten 0. 038 -0. 049 0.104 0.124 0.022
Crormal A ( - 1996 - 4865 26, 509 13,742 -1871
Sum of - 1060 - 3699 18, 528 - 8428 1459
Nor nal
FORCES .
| Caxiat A Q 94, 870 114,271 0 -37,425 | -59,942
Sum of 94, 349 103, 063 -17, 212 -18, 129 | -65,091
Axi al
| Forces |
Ciieen ADQ 312,873 | -403,441 | 2,400,117 | 1,020, 954 181,137
Sum ﬁf -125,781 | -461,083 | 2,216, 417 -994, 252 175,950
__I\P/Ibﬁrgnt s |




APPENDI X 4A
MATLAB W ND LOADI NG PROGRAMS

_This aPpendix contains the MATLAB prograns WINDTUNL.M, which
provides a tile of NASTRAN programtype w nd | oading data records
and the file rIGures.M, which is invoked b% WINDTUNL and supplies
surface pressure |oading coefficients as the basis for

interpol ation over a user-defined surface. These are the sane
coefficients as in Figure 4-6, but arranged as a MATLAB file.

Addi tional background is provided in Section 4.2.3.

The surface is defined by the user-supplied matrix, "gridw."
The first colum of gridw confains the node | abel, the second
column contains an inte%er flag to define the coordinate system
the third, fourth, and fifth colums contain the X Y, and Z
cartesian coordinates of the node, and the sixth colum contains
the weighting factor for the node. The flag in the second col um
is "o" (not blank) when the X, Y, and Z coordinates a{e Supglaed
in the next three colums. Wen the flag is "i» a cylindrica
coordinate systemis inplied with the radius in the third colum,
the angle (positive clockwise fromthe Y axis) is in the fourth
colum.  Z coordinates in the fifth colum can be arbitrary
because the programreconputes these fromthe equation of the
par abol a.

In addition to gridw, the user is also pronpted to suppIY
the focal length, antenna dianeter, and another flag to establish
whether t he nodel is for a full antenna or a symmetric (right)
half. The user also suEpI|es a vector of w nd speeds for each
antenna attitude, and the nanme of a file in which the output
force data is to be stored. The user also has the option of
either traditional Enalish units or Sl units and the di nensions
and other details for-input and output data in these units are
docunmented within the program

ED: This Appendix requires the files WINDTUNL.M and
FIGURES.M
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This is the first part of Appendix A to Chapter 4

% August 4,1993 this IS WINDTUNL.M

% Set a few defaults

3YSF 5,di amF360, f=152.5, system='ENG' ,h speed=60 % default for
ebug _ :

disp('supply diameter,dianF, sym=(1is full or.5 is half),
focus f= 1)

disp( ' "gridw= w» e g. gridw=[label flag(o VS 1) XY Z

wei ght] )

disp(', system=(blankSI OI ENG- in quotes) and “return” )
ew=exi st ( 'nowait')

keyboard

1abe1=gridw8 :,1) irad=gridw(:,3) ;angle=gridw(:,4); wgt=gridw(:,6);
sunw=sum(wgt

gf =find(gridw :2==0);

wconvert O flags to cylindrical coords

if(length(gf>1) )

x(af ridw(qf,3) i, ari f,4) ; rad(df)=sgrt(x. "2+y."2);
ANG1e (G S NeoypT¥htan Oeaf) 7y (et (af)msartx. "21y.2)
9@5 y rad angle] % debug

en

qagfind(angle<0);,if(qa>0),ateﬁp:angle; ,atenp(qga) =atenp(qga) +360;
en

x=rad. *sine(angle) ;y=rad. *cosine(angle) ;z=rad."2/4/f;
t=sqrt(rad. 2+4*f 2*ones(s1ze(rad)))

gx=x./t; ? z=2*t (-1)*f;
aprOJ 4*d|anT i antsym

i f(systemr= 'ENG')
anetft=aproj/ 144
afact=anetft/sumw % tributary area per unit of "wgt"

adens=. 002378 % slugs/cu-ft =# sec*sec/ft /ft/ft/ft
] gfact=0.5%*adens* (5280/3600) “2 % =q/(vel*vel)
en

I f (systenr=" Sl')
af act =aproj / sunw,
9some conversi ons: 11b=4.448n,
ft.=.3048m 4. 448/ .3048= 14 5932kg/slug
adens=l . 2255 % kg/cu. neter =. 002378/ 14. 5932/ (. 3048’ 3)
d gfact=.5%adens
en

gri daw=af act *wgt; % vector of areas associated with each grid
asl ope=gridaw. /gz;
asur f =sun{ asl ope)

figures
figset=5:09;
speeds= [60 60 100 60 60];




ffile= ' forcimg .dat’ _

disp( ' Provide nanme of file for saving "FORCE" records,"ffile=
disp(' provide figset H vector of FIGURES to use (default=5:9)]")
disp( ' provide speeds=[vector of speeds, to match flgset ] "
disp( ' speeds(detault) = [60 60 100 60 60] (mph) , then “return’”)

keybpard

for Iength(f|gset)

fid= f|gseté _

speed= spee S

clear fig

Ss= sprlntf( '"FIGURE%g' , fid)
fig=eval(ss) ;

gg=sprintf( 'PZERO%g', fid)
PZERO=eval (qq)

flip=£fliplr(fig) ;

fig={fig(:,1) fig flip fig(:,1));
az=15:30:359; az= [0 az 360];
radii=( .5:-.05:0)"';

fig(11, :)=PZERO*ones (1,14) ;
rr=rad/diam; _
tlc,pres interp2 (az, radii, fig,atenp,rr) ;toc
g=qf act *speed* speed

fnag- q*pres. *asl ope;

disp( Node Radi us Angl e Coeff. Force
Sl ope-A')
sunry=[label rad re angl e pres f mag aslope])

fx=fmag. *gx;fy=fmag. *gy; fz=fmag.*gz;

sumx=sum(£fx) ; sumy—sum(fy) , sumz=sum(fz) ,

xnmonent =surr& :

fprintf (' sults For orce ID %g.\n', fid)

diﬁ$(' The sums of the forces are') _
=[sumx suny sumz], fprintf(' Pitch moment (about X axis)

%g.\n' ,xmoment)

l1f=length(fmag) ,

FORCE=[fid*ones (If,l) label frmag gx gy gz pres aslope);

filid=fopen(ffile, 'a+')

fprintf(filid, 'FORCE

%B Of 98. Of9B. 1f¥B. 4f %8 .4f%8.4f\r\n', FORCE( :,1:6)');

disp('to continue "return"!')

ew=exi st ( 'nowait')

|féempzc» , keyboard, end %if "nowait"™ not given a value,wait

en

fclose(filid)

disp( ' Card i mages saved on ASClI| file'),ffile




-4-
This is part of Appendix A to Chapter 4
% July 29 this is FIGURES.M, made from UNIVAC RIL. (or RIL-ABS.)

% ANTENA MODEL W ND PRESSURE CCEFFI Cl ENT DATA FROM
% W ND TUNNEL STUDI ES. FROM 'JgpL cpP-4"'.
% REVI SED 27 OCT '81 TO PROPERLY ORI ENT BACK- W NDED
STRUCTURES
%C
FIGURES=[ . . . % O DEG PI TCH ANGLE
$STHETA=>
% 15 45 75 105 135 165
1. 00, 1. 05, 1. 05, 1.05), 1. 05, 1. 30,
1. 39, 1.42, 1. 42, 1.45), 1. 50, 1. 59,
1. 48, 1. 49, 1.52, 1.51, 1.62, 1.65
1.51, 1.51, 1.55, 1.59, 1. 64, 1. 66,
1.53, 1.53, 1. 56, 1.60, 1. 64, 1. 66,
1.53, 1.53, 1.57, 1.60), 1. 64, 1. 65,
1. 54, 1.55, 1. 58, 1.61, 1. 64, 1. 64,
1. 55, 1.57, 1. 58, 1.61, 1.63, 1. 63,
1. 56, 1. 58, 1. 59, 1.61, 1.62, 1.62
1. 58, 1.59, 1. 60, 1.61, 1.61, 1.61,]
PZER05=1.60, % SEND
%E 6 60 DEG Pl TCH ANGLE
% 15 45 75 105 135 165
FIGURE6=( . . .
. 68, 8, 2.6, 4.3, 3. 15, 2.5,
1.0, 1. 09, 2.3, 3.3, 1.8, 1. 42,
1. 19, 1. 27, 1. 95, 2.36, 1. 43, 1. 19,
1. 29, 1. 36, 1. 75, 1.8, 1. 39, 1.17
1. 38, 1. 43, 1. 66, 1.6, 1. 37, 1. 14,
1. 47, 1. 47, 1.63, 1.53, 1.39, 1.11
1.53, 1.5, 1. 62, 1.51, 1. 41, 1.09
1. 56, 1.52, 1. 58, 1.51, 1. 45, 1.12,
1.57, 1.53, 1. 58, 1.50, 1. 47, 1. 24,
1. 56, 1. 53, 1. 55, 1.52, 1. 50, 1.41,];
PZERO6=1.52 % SEND
FIGURE7=[. . . % 90 DEG PI TCH ANGLE (STOW
%15 45 75 105 135 165
. 30, -. 03, . 01, -. 23, -. 63, -1.20
. 57, .29, 02, -. 10, -. 53, -. 90,
. 50, . 30, .04, -. 08, - . 45, -. 75,
47, . 20, - 05, -. 06, -. 37, -. 64,
. 26, .09, 07, -. 06, -. 30, -. 54,
17, .05, . 08, -. 05, -.22, -.53
12, . 03, . 06, -. 03, -. 15, -. 32,
.09, 02, . 05, -. 02, -. 09, -. 20,
.07, .02, . 04, -. 01, -. 04, -. 12,

. 04, .02, .03, 0. 00, -. 01, -.05,1;




PZERO7=.01 % SEND

FIGURES =[... % 120 DEG PI TCH ANGLE
%15 45 75 105 135 165
1. 24, -. 12, -.22, -. 05, -.10, -.08
-1.28, -. 86, -. 217, .02, . 07, . 05,
1. 25, -. 89, -, 31, . 07, . 16, . 10,
-1. 18, -. 84, -. 30, . 10, .21, 13,
-1.10, -. 76, -. 28, 12, .24, 17,
-1.083, -. 66, -. 23, .12, .25, .20,
-. 93, -. 54, -. 18, C11, . 24, . 24,
-. 78, -. 40, -.13, . 09, .21, . 25,
-. 55, -. 24, -. 08, .07, .18, .22,
-.22, -. 10, -. 03, .04, .10, .14,];
PZER08=. 00 % $SEND
FIGURE9=[ . . . % 180 DEG PI TCH ANGLE
%15 45 75 105 135 165
-. 45, -. 37, -. 47, -. 49, -. 51, -.88
-. 68, -. 65, -. 10, -. 73, -. 87, -1.00
-. 85, -. 85, -. 90, -. 90, -1. 03, -1. 14,
1. 00, -1.02, - 1. 04, -1. 06, -1.11, -1.25
1.13, 1. 16, 1. 16, -1. 18, -1.18, -1.31
~-1.24, -1.24, 1. 24, -1. 27, -1. 24, -1. 33,
1. 34, 1.32, 1.32, - 1. 35, -1. 30, -1.36,
1. 39, 1. 36, 1. 36, -1. 39, -1. 34, -1.37
-1.41, -1. 39, -1. 39, -1. 41, -1.38, -1.40
-1.42 -1.41 -1.41, -1. 42, -1.41, -1.42,1;

PZER09=-1.42 % SEND




APPENDI X 4B

This is a condensed excerpt of tabulated data that appeared in
"compilation of Wnd Tunnel Coefficients for Parabolic

Reflectors',JPL Publication 78-16. The uncondensed data was
tabulted for increnents of 5 degrees in both elevation and
azimuth. There are three other tables in this reference for other
focal length-to-diameter ratios and surface porosities.

The use of these data is discussed in Section 4.2.6 of the
text and was enployed in the conputations of Tables 4-2 and 4-3.

ED. This appendi x requires tablea4b

20



oo 4

This is “appi<b" (Appendix B to Ch 4)
TABLE s
winD TUNNEL F BALANCE COEFFI Cl ENTS
Focal Length To Dianeter Ratio =0313
Solid Surface
(Excerpt From Table A-2, Ref. [4-10])
AZIMJTH ANGLE -+ .0
ELEVATI ON FORCE CCOEFFI ClI ENTS MOVENT CCEFFI Cl ENTS
ANGLE NORMAL AXI AL S| DE PI TCH ROLL YAW
0.0 -0.032 1.521 -0.002 0.038 -0.020 -0.003
15.0 -0.039 1.501 0,001 0.032 0.002 -0.002
30.0 -0.058 1.461 0,001 0.020 0.001 -0.001
45.0 -0.110 1.602 -0,003 -0.042 0.002 -0.001
60.0 -0.078 1.832 -0.011 -0.049 0.002
75.0 0.122 0.981 -0.010 0.069 0.001 0.001
90.0 0.153 -0,007 0.104 0.001
105.0 0,161 -0.502 -0.004 0.110 0.001
120.0 0.216  .-0.600 0.124 0.001
135.0 0.201 -0.532 0,004 0,112 -0.001 0.001
150.0 0.151 -0.793 0.004 0.050 -0.001 0.002
165.0 0.070 -0.880 0.003 0.028 0.002
180.0 -0.030 -0.961 0.002 0.022 0.001 0.002
AZI MUTH ANGLE = 15.0
ELEVATI ON FORCE COEFFI Cl ENTS MOVENT COEFFI Cl ENTS
ANGLE NORMAL AXI AL S| DE PI TCH ROLL YAW
0.0 -0.032 1.525 -0.022 0. 068 -0. 006 -0.021
15.0 -0.034 1.485 -0.022 0. 068 -0.003 -0.021
30.0 -0. 047 1. 495 -0.027 0.047 0. 001 -0.025
45.0 -0. 066 1.574 -0,034 -0.042 0.005 -0.020
60.0 1.474 -0.017 0.011 0, 007 0.012
75.0 0.108 0.983 0.013 0.113 0. 008 0.037
90.0 0,122 0.141 0,034 0.122 0.009 0.047
105.0 0.126  -0.454 0.052 0.120 0.009 0.054
120.0 0.153  -0.767 0.062 0.111 0.010 0.056
135,0 0.150 -0.666 0.070 0.086 0.011 0.057
150.0 0.133 -0.756 0.075 0.047 0.010 0.059
165.0 0,096 -0.871 0.079 0.005 0.009 0.060
180.0 -0.018  -0.942 0.081 -0.038 0.007 0.060
AZI MUTH ANGLE = 30.0
ELEVATI ON FORCE CCEFFI Cl ENTS MOVENT CCEFFI Cl ENTS
ANGLE NORMAL AXI AL S| DE PI TCH ROLL YAW
0.0 -0.025 1.577 -0.044 0.030 -0.013 -0.038
15.0 -0.032 1.447 -0.042 0. 058 -0.004 -0.031
30.0 -0. 049 1. 507 -0.043 0. 062 -0.035
45.0 -0.052 1.786 -0. 050 --0.034 -0.004 -0.070
60.0 -0. 009 1. 606 -0. 029, 0.010 0, 002 -0.019
75.0 0. 107 0.725 0. 052 0.112 0.003 0. 042
90.0 0.112 --0.103 0.094 0.120 0. 004 0. 065
105.0 0.112 --0.636 0.119 0.117 0, 004 0.079



0,136
0.146
0.153
0.157
0.158

0.113
0.076
0,034
0.008
-0.019

0.005
0,006
0.006
0.004
0.002

0.089
0,097
0.101
0.102
0.103



AZI MUTH ANGLE = 45.0

ELEVATI ON FORCE CCEFFI Cl ENTS MOMENT  COEFFI Cl ENTS
ANGLE NORMAL  AXI AL S| DE Pl TCH ROLL YAW
0.0 -0.021 1.519 -0, 058 0.035 0.018 -0.044
15.0 -0.018 1.609 -0.064 0.055 0.006 -0.055
30.0 -0.008 1,629 -0.070 0.070 0.001 -0.082
45.0 0.013 1.588 -0.035 0.062 0,004 -0.038
60.0 0.053 1.288 0.039 0.066 0.006 0.029
75.0 0.105 0.526 0.090 0.096° 0.060
90.0 0.105 -0.105 0.124 0.097 -0.001 0.080
105.0 0.108 -0.498 0.134 0.096 0.091.
120.0 0.116 -0.553 0.140 0,083 0.003 0.099
135.0 0.115 -0.200 0.175 0.072 -0.003 0.109
150.0 0,095 -0.358 0.191 0.035 0,005 0.121
165.0 0.057 -0.512 0.197 “ 0.014 0.005 0.128
180.0 -0.006 -0.600 0.200 -0.008 0.001 0.130

AZI MUTH ANGLE = 60.0

ELEVATI ON FORCE CCEFFI Cl ENTS MOVENT COEFFI Cl ENTS
ANGLE NORMAL  AXI AL S| DE Pl TCH ROLL YAW
0.0 0.085 1.581 -0.076 0.130 0.018 -0.075%
15.0 0.017 1.671 -0.065 0.089 0.018 -0.050
30.0 -0.008 1.531 -0.030 0.090 0.022 -0.010
45.0 0.020 1.162 0.050 0,071 0.013 0.035
60.0 0.056 0.802 0.120 0.061 0.003 0.070
75.0 0.078 0. 397 0.142 0.071 0.001 0. 090
90.0 0.084 0,057 0,150 0. 065 0.002 0, 100
105.0 0.084 -0.269 0.150 0. 054 0.002 0.10%
120.0 0.077 -0,490 0. 155 0.040 0.003 0.102
135.0 0.067 -0.534 0.180 0.025 0.006 0.120
150. 0 0. 056 -0.121 0.201 0.012 -0.001 0.132
165.0 0,032 -0. 150 0.228 0.002 -0.005 0. 140
180.0 -0.019 -0.163 0,235 -0.002 -0.005 0.145
AZI MUTH ANGLE = 75.0
ELEVATI ON FORCE COEFFI Cl ENTS MOVENT COEFFI Cl ENTS
ANGLE NORMAL  AXI AL S| DE Pl TCH ROLL YAW
0.0 0.002 0.875 0.136 0. 005 0.013 0. 064
15.0 0.010 0,845 0.133 0.027 0.012 0.075
30.0 0.017 0.775 0.131 0. 080 0.011 0. 086
45.0 0.029 0,584 0. 144 0. 050 0. 005 0.094
60.0 0,040 0.404 0. 156 0.035 0,001 0.098
75.0 0.042 0.203 00161 0.033 -0.001 0.100
90.0 0.043 0.122 0, 164 0.031 -0, 003 0.102
105.0 0.041 -0.257 0. 167 0.028 -0.004 0.102
120.0 0.039 -0.436 0. 167 0.022 -0. 004 0.104
135.0 0.033 -0.400 0. 165 0.007 -0.003 0.105
150.0 0.026 -0.482 0.168 -0.024 -0.002 0.106
165.0 0.013 -0.513 0.179 -0, 008 0.106
180.0 -0.005 -0.521 0.177 -0.001 0,001 0.105



AZI MUTH ANGLE =90.0

ELEVATI ON FORCE CCEFFI Cl ENTS MOMENT COEFFI Cl ENTS
ANGLE NORMAL AXI AL SI DE PI TCH ROLL YAW
0.0 0.005 -0.047 0.201 0.015 0.012 0.130
15.0 0.001 -0.019 0.185 0.007 0,012 0.130
30.0 -0.002 -0,003 0.175 0.005 0.012 0.129
45.0 -0.003 0,016 0.170 0.002 0.011 0,129
60.0 -0.004 0.026 0.165 0.001 0.008 0.130
75.0 -0.002 0.021 0,160 0.006 0.129
90.0 0.021 0.162 0.004 0.128
105.0 0.002 0.026 0.165 0.006 0.129
120.0 0.003 0.021 0.170 -0.001 00008 0.130
135.0 0.002 0.021 0.178 -0.003 0.010 0.130
150,0 0.019 0,186 -0.006 0.012 0.129
165.0 -0.003 -0.010 0.194 -0.010 0,012 0.129
180.0 -0,006 -0.040 0.201 -0.015 0.013 0.131

AZI MUTH ANGLE =105.0

ELEVATI ON FORCE CCEFFI Cl ENTS MOMENT  COEFFI Cl ENTS

ANGLE NORMVAL AXI AL SI DE Pl TCH ROLL YAW
0.0 0.005 -0.521 0.177 0. 001 0.001 0.105
15.0 -0.013 -0.511 0.179 0. 008 0.106
30.0 -0.026 -0.481 0.168 0. 024 -0. 002 0.132
45.0 -0.033 -0.401 0. 165 -0. 007 -0.003 0.105
60.0 -0.039 -0.432 0.167 -0.022 -0. 004 0.104
75.0 -0.041 -0.254 0.167 -0.028 -0.004 0.102
90.0 -0.043 0.126 0.164 -0.031 -0.003 0.102
105.0 -0.042 0.203 0.161 -0.033 -0.001 0.100
120.0 -0.040 0,400 0. 156 -0. 035 0.001 0,098
135.0 -0.029 0.582 0. 144 -0. 050 0. 005 0.094
150.0 -0.017 0.770 0.131 -0. 080 0.011 0.086
165.0 -0.010 0.844 0.133 -0. 027 0.012 0.075
180.0 -0.002 0.872 0, 136 -0. 005 0.013 0.064

AZI MUTH ANGLE =120.0
ELEVATI ON FORCE COEFFI CI ENTS MOMENT COEFFI Cl ENTS

ANGLE NORVAL AXI AL SI DE Pl TCH ROLL YAW
0.0 0.019 -0.163 0. 235 0. 002 -0.005 0. 145
15.0 -0. 032 -0.152 0.228 -0.002 -0,005 0. 140
30%0 -0. 056 -0.123 0.201 -0.012 -0.001 0.132
45,0 -0. 067 -0.533 0.180 -0.025 04006 0.120
.0 -0.077 -0.499 0.155 -0.040 0,003 0.102
.0 -0. 084 -0.262 0. 150 -0.054 0.002 0. 105
.0 -0. 084 0.053 0.150 -0. 065 0.002 0. 100
.0 -0.078 0.390 0.142 -0.071 0.001 0.090
.0 -0. 056 0.800 0.120 -0.061 0.003 0.070
.0 -0. 020 1.160 0. 050 -0.071 0.013 0. 035
.0 0. 008 1.533 -0. 030 -0.090 0.022 -0.010
.0 -0. 017 1,670 -0. 065 -0. 089 0.018 -0. 050
.0 -0. 085 1.581 -0.076 -0.130 0.018 -0.075



AZI MUTH ANGLE =135.0

ELEVATI ON FORCE CCEFFI Cl ENTS

ANGLE NORMAL  AXI AL SI DE Pl TCH
0.0 0,006 -0.605 0.200 0.008
15.0 -0.057 -0.513 0.197 -0.014
30.0 -0.095 -0,352 0.191 -0.035
45.0 -0,115 -0.201 0.175 -0.072
60.0 -00116 -0,556 0, 140 -0.083
75.0 -0,108 -0,499 0.134 -0. 096
90.0 -0.105 -0.107 0.124 -0. 097
105. 0 -0,105 0,528 0,090 -0, 096
120.0 -0.053 1.282 0.039 -0. 066
135.0 -0.013 1,580 -0.035 -0. 062
150.0 0,008 1.625 -0.070 -0.070
165.0 0.018 1.600 -0. 064 -0, 055
180.0 0.021 1.513 -0. 058 -0.035

AZI MUTH ANGLE = 150, 0

ELEVATI ON FORCE COEFFI Cl ENTS

ANGLE NORMAL  AXIAL SI DE Pl TCH
0,0 0.016 -0.737 0,158 0.019
15.0 -0.085 -0.602 0.157 -0.008
30.0 -0.118 -0.581 0,153 -0,034
45.0 -0.127 -0.722 0.146 -0.076
60.0 -0.123 -0.911 0.136 -0.113
75.0 -0,112 -0.636 0.119 -0.117
90.0 -0.112 -0.105 0.094 -0.120
105. 0 -0.107 0.722 0.052 -0.112
120.0 0.009 1.600 -0.029 -0.010
135, 0 0.052 1.786 -0.050 0.034
150. 0 0.049 1,500 -0.043 -0.062
165.0 0.032 1.445 -0.042 -0.058
180.0 0.025 1.572 -0,044 -0.030

AZI MUTH ANGLE =165.0

ELEVATI ON FORCE CCEFFI Cl ENTS

ANGLE NORVAL  AXI AL S| DE Pl TCH

-0.949 0.081 0. 038
-0.873 0.079 -0, 005
-0.753 0.075 -0. 047
-0.661 0.070 -0. 086
-0.764 0.062 -0.111
-0.452 0.052 -0.120
0.142 0.034 -0. 122
0.980 0.013 -0.113
1.473 -0.017 -0.011
1.575 -0.034 0. 042
1.495 -0,027 -0.047
1.480 -0.022 -0. 068
1.523 -0.022 -0. 068
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0.002
0.004
0.006
0.006
0.005
0.004
0.004
0,003
0.002
-0.004

-0.004
-0.013

ROLL

. 007
. 009
.010
.011
.010
. 009
. 009
. 008
. 007

005
001

. 003
. 006

MOMENT  CCEFFI Cl ENTS

YAW
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MOMENT  COEFFI Cl ENTS

YAW

.103
.102
.101
.097
.089
.079
.065
.042
.019
.070
.035
-0.031
-0.038

...
OO0 ococoO0O0OOOO

MOMENT  COEFFI Cl ENTS

YAW

0. 060
0. 060
0. 059
0. 057
0, 056
0. 054
0. 047
0. 037
0.012
-0. 020
-0. 025
-0.021
-0.021



AZI MUTH ANGLE = 180.0

ELEVATI ON FORCE COEFFI Cl ENTS MOMENT  COEFFI Cl ENTS
ANGLE NORMAL  AXI AL S| DE Pl TCH ROLL YAW
0.0 0.030 -0.961 0.002 -0.022 0.001 0.002

15.0 -0.070 -0.881 0,003 -0.028 0.002

30.0 -0.151 -0.792 0,004 -0,050 -0.001 0.002

45.0 -0.201 -0.533 0.004 -0.112 -0.001 0.001

60.0 -0,216 -0.605 -0.124 0.001

75.0 -0.161 -0.501 -0.004 -0.110 0,001

90.0 -0.153 -0,007 -0.104 0.001

105, 0 -0.122 0.983 -0.010 -0,069 0.001

120.0 0.078 1.831 -0.011 0.049 0. 002

135.0 0.110 10600 -0$003 0.042 0. 002 -0.001

150. 0 0.058 1. 462 0.001 -0.020 0. 001 -0.001

165.0 0.039 1.500 0.001 -0.032 0.002 -0.002

180.0 0.032 1.521 -0.002 -0.038 -0.002 -0.003



